class: center, middle, title-slide ## 데이터 분석의 기본이 되는 데이터전처리 #### Step1. 데이터 전처리를 위한 기초 학습하기 ### <https://mrchypark.github.io/dabrp_classnote3/class3> #### [[pdf다운로드](https://github.com/mrchypark/dabrp_classnote3/raw/master/Materials/class3.pdf)] [[문의하기](http://pf.kakao.com/_RXANd)] [[피드백하기](https://github.com/mrchypark/dabrp_classnote3/issues/new)] ### 박찬엽 ### 2017년 9월 28일 --- ## 목차 0. 과제 질답 1. 수업의 목표 2. 데이터를 다루는 주요 7가지 동작 - 데이터 소개 : nycflights13 - dplyr을 활용한 주요 7가지 동작 3. tidy data, long form과 wide form - 함수를 연결하는 파이프 연산자 - tidyr로 데이터를 tidy하게 만들기 4. 데이터 소스에 연결하기 - 데이터 소스 소개와 연결 패키지 dbplyr, dtplyr - 데이터 소스와 함께 사용하는 dplyr 함수 5. 과제 --- class: center, middle, title-slide ## 과제 질답 --- ## 수업의 목표 ### 1. 데이터를 다루는 주요 7가지 동작을 설명할 수 있다. ### 2. tidy data, long form과 wide form의 장단점을 설명할 수 있다. ### 3. 데이터 베이스의 테이블을 R 객체에 연결하여 데이터를 다룰 수 있다. --- class: center, middle, title-slide ## 데이터를 다루는 주요 7가지 동작 ---  --- ## 실습 데이터 소개 [nycflights13](https://cran.r-project.org/web/packages/nycflights13/nycflights13.pdf)는 2013년 미국의 비행기 운항기록에 관련된 airlines, airports, flights, planes, weather의 5개 데이터를 가지고 있는 데이터 패키지 ```r if (!requireNamespace("nycflights13")) install.packages("nycflights13") ``` ``` ## package 'nycflights13' successfully unpacked and MD5 sums checked ## ## The downloaded binary packages are in ## C:\Users\mrchypark\AppData\Local\Temp\RtmpGkwJOm\downloaded_packages ``` ```r library(nycflights13) nycflights13::flights ``` ``` ## # A tibble: 336,776 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 1 1 517 515 2 830 ## 2 2013 1 1 533 529 4 850 ## 3 2013 1 1 542 540 2 923 ## 4 2013 1 1 544 545 -1 1004 ## 5 2013 1 1 554 600 -6 812 ## 6 2013 1 1 554 558 -4 740 ## 7 2013 1 1 555 600 -5 913 ## 8 2013 1 1 557 600 -3 709 ## 9 2013 1 1 557 600 -3 838 ## 10 2013 1 1 558 600 -2 753 ## # ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ## [nycflights13 코드북](https://cran.r-project.org/web/packages/nycflights13/nycflights13.pdf) ```r str(flights) ``` ``` ## Classes 'tbl_df', 'tbl' and 'data.frame': 336776 obs. of 19 variables: ## $ year : int 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ... ## $ month : int 1 1 1 1 1 1 1 1 1 1 ... ## $ day : int 1 1 1 1 1 1 1 1 1 1 ... ## $ dep_time : int 517 533 542 544 554 554 555 557 557 558 ... ## $ sched_dep_time: int 515 529 540 545 600 558 600 600 600 600 ... ## $ dep_delay : num 2 4 2 -1 -6 -4 -5 -3 -3 -2 ... ## $ arr_time : int 830 850 923 1004 812 740 913 709 838 753 ... ## $ sched_arr_time: int 819 830 850 1022 837 728 854 723 846 745 ... ## $ arr_delay : num 11 20 33 -18 -25 12 19 -14 -8 8 ... ## $ carrier : chr "UA" "UA" "AA" "B6" ... ## $ flight : int 1545 1714 1141 725 461 1696 507 5708 79 301 ... ## $ tailnum : chr "N14228" "N24211" "N619AA" "N804JB" ... ## $ origin : chr "EWR" "LGA" "JFK" "JFK" ... ## $ dest : chr "IAH" "IAH" "MIA" "BQN" ... ## $ air_time : num 227 227 160 183 116 150 158 53 140 138 ... ## $ distance : num 1400 1416 1089 1576 762 ... ## $ hour : num 5 5 5 5 6 5 6 6 6 6 ... ## $ minute : num 15 29 40 45 0 58 0 0 0 0 ... ## $ time_hour : POSIXct, format: "2013-01-01 05:00:00" "2013-01-01 05:00:00" ... ``` --- class: center, middle, title-slide [][3] --- ## 데이터를 다루는 주요 7가지 동작 .pull-left[ [dplyr][3]은 데이터를 다루는 주요 7가지 동작 자체를 함수로 가지고 추가적인 helper 함수를 함께 제공 1. 열 방향: 선택 - select() 1. 열 방향: 계산 - mutate() 1. 행 방향: 조건 - filter() 1. 행 방향: 추가 - bind_rows() 1. 행 방향: 정렬 - arrange() 1. 그룹 계산 - group_by() + summarise() 1. 열 결합 - left_join() ] .pull-right[  ] --- ## dplyr 준비 ```r if (!requireNamespace("dplyr")) install.packages("dplyr") ``` ``` ## Loading required namespace: dplyr ``` ```r library(dplyr) ``` ``` ## ## Attaching package: 'dplyr' ``` ``` ## The following objects are masked from 'package:stats': ## ## filter, lag ``` ``` ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union ``` --- ### 열 방향: 선택 - select() 데이터에서 컬럼을 선택하여 사용함. select()는 선언된 순서대로 컬럼을 정렬함 .pull-left[ ```{} select(flights, year, month, day) ``` ] .pull-right[ ``` ## # A tibble: 336,776 x 3 ## year month day ## <int> <int> <int> ## 1 2013 1 1 ## 2 2013 1 1 ## 3 2013 1 1 ## 4 2013 1 1 ## 5 2013 1 1 ## 6 2013 1 1 ## 7 2013 1 1 ## 8 2013 1 1 ## 9 2013 1 1 ## 10 2013 1 1 ## # ... with 336,766 more rows ``` ] --- ### 열 방향: 선택 - select() 숫자에서만 제공하던 from:to 문법을 컬럼 순서를 기준으로 지원 .pull-left[ ```{} select(flights, year:day) ``` ] .pull-right[ ``` ## # A tibble: 336,776 x 3 ## year month day ## <int> <int> <int> ## 1 2013 1 1 ## 2 2013 1 1 ## 3 2013 1 1 ## 4 2013 1 1 ## 5 2013 1 1 ## 6 2013 1 1 ## 7 2013 1 1 ## 8 2013 1 1 ## 9 2013 1 1 ## 10 2013 1 1 ## # ... with 336,766 more rows ``` ] --- ### 열 방향: 선택 - select() -(마이너스)는 지정한 컬럼을 제외하고 전부라는 의미 ```r select(flights, -(year:day)) ``` ``` ## # A tibble: 336,776 x 16 ## dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay ## <int> <int> <dbl> <int> <int> <dbl> ## 1 517 515 2 830 819 11 ## 2 533 529 4 850 830 20 ## 3 542 540 2 923 850 33 ## 4 544 545 -1 1004 1022 -18 ## 5 554 600 -6 812 837 -25 ## 6 554 558 -4 740 728 12 ## 7 555 600 -5 913 854 19 ## 8 557 600 -3 709 723 -14 ## 9 557 600 -3 838 846 -8 ## 10 558 600 -2 753 745 8 ## # ... with 336,766 more rows, and 10 more variables: carrier <chr>, ## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, ## # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm> ``` --- ### 열 방향: 선택 - select() everything() 같은 helper 함수를 제공 everything()은 select()내에 선언된 컬럼을 제외한 나머지 전부라는 의미. ```r select(flights, time_hour, air_time, everything()) ``` ``` ## # A tibble: 336,776 x 19 ## time_hour air_time year month day dep_time sched_dep_time ## <dttm> <dbl> <int> <int> <int> <int> <int> ## 1 2013-01-01 05:00:00 227 2013 1 1 517 515 ## 2 2013-01-01 05:00:00 227 2013 1 1 533 529 ## 3 2013-01-01 05:00:00 160 2013 1 1 542 540 ## 4 2013-01-01 05:00:00 183 2013 1 1 544 545 ## 5 2013-01-01 06:00:00 116 2013 1 1 554 600 ## 6 2013-01-01 05:00:00 150 2013 1 1 554 558 ## 7 2013-01-01 06:00:00 158 2013 1 1 555 600 ## 8 2013-01-01 06:00:00 53 2013 1 1 557 600 ## 9 2013-01-01 06:00:00 140 2013 1 1 557 600 ## 10 2013-01-01 06:00:00 138 2013 1 1 558 600 ## # ... with 336,766 more rows, and 12 more variables: dep_delay <dbl>, ## # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, ## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, distance <dbl>, ## # hour <dbl>, minute <dbl> ``` --- ### 열 방향: 선택 - select() ends_with()같이 글자의 일부에 해당하는 컬럼 전부를 가져오는 helper 함수도 있음. 정규표현식의 주요 기능을 함수로 제공. ?select로 확인 ```r select(flights, year:day, ends_with("delay"), distance, air_time) ``` ``` ## # A tibble: 336,776 x 7 ## year month day dep_delay arr_delay distance air_time ## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> ## 1 2013 1 1 2 11 1400 227 ## 2 2013 1 1 4 20 1416 227 ## 3 2013 1 1 2 33 1089 160 ## 4 2013 1 1 -1 -18 1576 183 ## 5 2013 1 1 -6 -25 762 116 ## 6 2013 1 1 -4 12 719 150 ## 7 2013 1 1 -5 19 1065 158 ## 8 2013 1 1 -3 -14 229 53 ## 9 2013 1 1 -3 -8 944 140 ## 10 2013 1 1 -2 8 733 138 ## # ... with 336,766 more rows ``` --- ### 열 방향: 계산 - mutate() 출력 편의를 위해 일부 데이터만 사용 ```r flights_sml <- select(flights, year:day, ends_with("delay"), distance, air_time) flights_sml ``` ``` ## # A tibble: 336,776 x 7 ## year month day dep_delay arr_delay distance air_time ## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> ## 1 2013 1 1 2 11 1400 227 ## 2 2013 1 1 4 20 1416 227 ## 3 2013 1 1 2 33 1089 160 ## 4 2013 1 1 -1 -18 1576 183 ## 5 2013 1 1 -6 -25 762 116 ## 6 2013 1 1 -4 12 719 150 ## 7 2013 1 1 -5 19 1065 158 ## 8 2013 1 1 -3 -14 229 53 ## 9 2013 1 1 -3 -8 944 140 ## 10 2013 1 1 -2 8 733 138 ## # ... with 336,766 more rows ``` --- ### 열 방향: 계산 - mutate() 각 컬럼간의 계산으로 새로운 열을 만들 수 있음 ```r mutate(flights_sml, gain = arr_delay - dep_delay, speed = distance / air_time * 60 ) ``` ``` ## # A tibble: 336,776 x 9 ## year month day dep_delay arr_delay distance air_time gain speed ## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 2013 1 1 2 11 1400 227 9 370.0441 ## 2 2013 1 1 4 20 1416 227 16 374.2731 ## 3 2013 1 1 2 33 1089 160 31 408.3750 ## 4 2013 1 1 -1 -18 1576 183 -17 516.7213 ## 5 2013 1 1 -6 -25 762 116 -19 394.1379 ## 6 2013 1 1 -4 12 719 150 16 287.6000 ## 7 2013 1 1 -5 19 1065 158 24 404.4304 ## 8 2013 1 1 -3 -14 229 53 -11 259.2453 ## 9 2013 1 1 -3 -8 944 140 -5 404.5714 ## 10 2013 1 1 -2 8 733 138 10 318.6957 ## # ... with 336,766 more rows ``` --- ### 열 방향: 계산 - mutate() 컬럼을 지우거나 기존의 컬럼을 변경하는 것도 가능 ```r mutate(flights_sml, arr_delay = NULL, air_time = air_time / 60 ) ``` ``` ## # A tibble: 336,776 x 6 ## year month day dep_delay distance air_time ## <int> <int> <int> <dbl> <dbl> <dbl> ## 1 2013 1 1 2 1400 3.7833333 ## 2 2013 1 1 4 1416 3.7833333 ## 3 2013 1 1 2 1089 2.6666667 ## 4 2013 1 1 -1 1576 3.0500000 ## 5 2013 1 1 -6 762 1.9333333 ## 6 2013 1 1 -4 719 2.5000000 ## 7 2013 1 1 -5 1065 2.6333333 ## 8 2013 1 1 -3 229 0.8833333 ## 9 2013 1 1 -3 944 2.3333333 ## 10 2013 1 1 -2 733 2.3000000 ## # ... with 336,766 more rows ``` --- ### 열 방향: 계산 - mutate() transmute()는 계산한 컬럼만 있는 테이블을 생성 ```r transmute(flights, gain = arr_delay - dep_delay, hours = air_time / 60, gain_per_hour = gain / hours ) ``` ``` ## # A tibble: 336,776 x 3 ## gain hours gain_per_hour ## <dbl> <dbl> <dbl> ## 1 9 3.7833333 2.378855 ## 2 16 3.7833333 4.229075 ## 3 31 2.6666667 11.625000 ## 4 -17 3.0500000 -5.573770 ## 5 -19 1.9333333 -9.827586 ## 6 16 2.5000000 6.400000 ## 7 24 2.6333333 9.113924 ## 8 -11 0.8833333 -12.452830 ## 9 -5 2.3333333 -2.142857 ## 10 10 2.3000000 4.347826 ## # ... with 336,766 more rows ``` --- ### 열 방향: 계산 - mutate() group_by()와 함께 [window function](http://dplyr.tidyverse.org/articles/window-functions.html) 들이 유용하게 사용됨 ```r flights_smlg <- group_by(flights_sml, month) mutate(flights_smlg, rank = row_number(desc(arr_delay))) ``` ``` ## # A tibble: 336,776 x 8 ## # Groups: month [12] ## year month day dep_delay arr_delay distance air_time rank ## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <int> ## 1 2013 1 1 2 11 1400 227 6970 ## 2 2013 1 1 4 20 1416 227 5064 ## 3 2013 1 1 2 33 1089 160 3458 ## 4 2013 1 1 -1 -18 1576 183 21131 ## 5 2013 1 1 -6 -25 762 116 23925 ## 6 2013 1 1 -4 12 719 150 6699 ## 7 2013 1 1 -5 19 1065 158 5226 ## 8 2013 1 1 -3 -14 229 53 19019 ## 9 2013 1 1 -3 -8 944 140 15534 ## 10 2013 1 1 -2 8 733 138 7912 ## # ... with 336,766 more rows ``` --- ### 행 방향: 조건 - filter() filter()는 데이터 중에 조건에 해당하는 일부 데이터만 필터해서 사용. 논리 연산자와 결합하여 많이 사용하며 [이곳](https://mrchypark.github.io/r/operator/%EB%85%BC%EB%A6%AC-%EC%97%B0%EC%82%B0%EC%9E%90-%EC%A0%95%EB%A6%AC.html)에서 추가적으로 내용을 확인할 수 있음 ```r filter(flights, month == 1) ``` ``` ## # A tibble: 27,004 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 1 1 517 515 2 830 ## 2 2013 1 1 533 529 4 850 ## 3 2013 1 1 542 540 2 923 ## 4 2013 1 1 544 545 -1 1004 ## 5 2013 1 1 554 600 -6 812 ## 6 2013 1 1 554 558 -4 740 ## 7 2013 1 1 555 600 -5 913 ## 8 2013 1 1 557 600 -3 709 ## 9 2013 1 1 557 600 -3 838 ## 10 2013 1 1 558 600 -2 753 ## # ... with 26,994 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 조건 - filter() & 는 **and** 라는 뜻이며 조건을 추가할 때 사용 ```r filter(flights, month == 1 & day == 1) ``` ``` ## # A tibble: 842 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 1 1 517 515 2 830 ## 2 2013 1 1 533 529 4 850 ## 3 2013 1 1 542 540 2 923 ## 4 2013 1 1 544 545 -1 1004 ## 5 2013 1 1 554 600 -6 812 ## 6 2013 1 1 554 558 -4 740 ## 7 2013 1 1 555 600 -5 913 ## 8 2013 1 1 557 600 -3 709 ## 9 2013 1 1 557 600 -3 838 ## 10 2013 1 1 558 600 -2 753 ## # ... with 832 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 조건 - filter() | 는 **or** 라는 뜻 ```r filter(flights, month == 11 | month == 12) ``` ``` ## # A tibble: 55,403 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 11 1 5 2359 6 352 ## 2 2013 11 1 35 2250 105 123 ## 3 2013 11 1 455 500 -5 641 ## 4 2013 11 1 539 545 -6 856 ## 5 2013 11 1 542 545 -3 831 ## 6 2013 11 1 549 600 -11 912 ## 7 2013 11 1 550 600 -10 705 ## 8 2013 11 1 554 600 -6 659 ## 9 2013 11 1 554 600 -6 826 ## 10 2013 11 1 554 600 -6 749 ## # ... with 55,393 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 조건 - filter() **%in%**는 유용하게 사용하는 논리 연산자로 왼쪽에 있는 벡터가 오른쪽 벡터의 데이터 중 어느 하나라도 맞으면 출력 ```r filter(flights, month %in% c(11, 12)) ``` ``` ## # A tibble: 55,403 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 11 1 5 2359 6 352 ## 2 2013 11 1 35 2250 105 123 ## 3 2013 11 1 455 500 -5 641 ## 4 2013 11 1 539 545 -6 856 ## 5 2013 11 1 542 545 -3 831 ## 6 2013 11 1 549 600 -11 912 ## 7 2013 11 1 550 600 -10 705 ## 8 2013 11 1 554 600 -6 659 ## 9 2013 11 1 554 600 -6 826 ## 10 2013 11 1 554 600 -6 749 ## # ... with 55,393 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 조건 - filter() ! 는 local 데이터에서 결과를 반대로 뒤집는 역할을 하며 수학에서의 괄호와 같이 연산의 범위를 작성해 두는 것이 문제 발생 소지가 적어점 ```r filter(flights, !(arr_delay > 120 | dep_delay > 120)) ``` ``` ## # A tibble: 316,050 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 1 1 517 515 2 830 ## 2 2013 1 1 533 529 4 850 ## 3 2013 1 1 542 540 2 923 ## 4 2013 1 1 544 545 -1 1004 ## 5 2013 1 1 554 600 -6 812 ## 6 2013 1 1 554 558 -4 740 ## 7 2013 1 1 555 600 -5 913 ## 8 2013 1 1 557 600 -3 709 ## 9 2013 1 1 557 600 -3 838 ## 10 2013 1 1 558 600 -2 753 ## # ... with 316,040 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 추가 - bind_rows() bind_rows()를 진행하기 위해서 데이터를 작성 ```r feb<-filter(flights, month==2) dec<-filter(flights, month==12) dim(feb); dim(dec) ``` ``` ## [1] 24951 19 ``` ``` ## [1] 28135 19 ``` ```r nrow(feb)+nrow(dec) ``` ``` ## [1] 53086 ``` --- ### 행 방향: 추가 - bind_rows() bind_rows()는 컬럼 이름을 기준으로 같은 컬럼 밑에 데이터를 붙여서 **묶어줌**. ```r bind_rows(feb, dec) ``` ``` ## # A tibble: 53,086 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 2 1 456 500 -4 652 ## 2 2013 2 1 520 525 -5 816 ## 3 2013 2 1 527 530 -3 837 ## 4 2013 2 1 532 540 -8 1007 ## 5 2013 2 1 540 540 0 859 ## 6 2013 2 1 552 600 -8 714 ## 7 2013 2 1 552 600 -8 919 ## 8 2013 2 1 552 600 -8 655 ## 9 2013 2 1 553 600 -7 833 ## 10 2013 2 1 553 600 -7 821 ## # ... with 53,076 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 추가 - bind_rows() list()로 구분된 데이터도 **묶어줌**. ```r bind_rows(list(feb, dec)) ``` ``` ## # A tibble: 53,086 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 2 1 456 500 -4 652 ## 2 2013 2 1 520 525 -5 816 ## 3 2013 2 1 527 530 -3 837 ## 4 2013 2 1 532 540 -8 1007 ## 5 2013 2 1 540 540 0 859 ## 6 2013 2 1 552 600 -8 714 ## 7 2013 2 1 552 600 -8 919 ## 8 2013 2 1 552 600 -8 655 ## 9 2013 2 1 553 600 -7 833 ## 10 2013 2 1 553 600 -7 821 ## # ... with 53,076 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 추가 - bind_rows() split()은 첫번째 인자로 받은 데이터를 컬럼을 기준으로 list()로 분리해 줌. ```r flights_mon<-split(flights, flights$month) summary(flights_mon) ``` ``` ## Length Class Mode ## 1 19 tbl_df list ## 2 19 tbl_df list ## 3 19 tbl_df list ## 4 19 tbl_df list ## 5 19 tbl_df list ## 6 19 tbl_df list ## 7 19 tbl_df list ## 8 19 tbl_df list ## 9 19 tbl_df list ## 10 19 tbl_df list ## 11 19 tbl_df list ## 12 19 tbl_df list ``` --- ### 행 방향: 추가 - bind_rows() split()으로 분리된 12개의 list() 자료도 잘 합쳐줌 ```r nrow(flights) ``` ``` ## [1] 336776 ``` ```r bind_rows(flights_mon) ``` ``` ## # A tibble: 336,776 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 1 1 517 515 2 830 ## 2 2013 1 1 533 529 4 850 ## 3 2013 1 1 542 540 2 923 ## 4 2013 1 1 544 545 -1 1004 ## 5 2013 1 1 554 600 -6 812 ## 6 2013 1 1 554 558 -4 740 ## 7 2013 1 1 555 600 -5 913 ## 8 2013 1 1 557 600 -3 709 ## 9 2013 1 1 557 600 -3 838 ## 10 2013 1 1 558 600 -2 753 ## # ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 추가 - bind_rows() 다른 종류의 데이터도 **묶어줌**. c()는 vector를 생성하고, data_frame은 data.frame을 생성함 ```r bind_rows( c(a = 1, b = 2), data_frame(a = 3:4, b = 5:6), c(a = 7, b = 8) ) ``` ``` ## # A tibble: 4 x 2 ## a b ## <dbl> <dbl> ## 1 1 2 ## 2 3 5 ## 3 4 6 ## 4 7 8 ``` --- ### 행 방향: 추가 - bind_rows() 데이터를 묶을 때 데이터를 구분하는 컬럼을 추가할 수 있음 ```r bind_rows(list(feb, dec), .id = "id") ``` ``` ## # A tibble: 53,086 x 20 ## id year month day dep_time sched_dep_time dep_delay arr_time ## <chr> <int> <int> <int> <int> <int> <dbl> <int> ## 1 1 2013 2 1 456 500 -4 652 ## 2 1 2013 2 1 520 525 -5 816 ## 3 1 2013 2 1 527 530 -3 837 ## 4 1 2013 2 1 532 540 -8 1007 ## 5 1 2013 2 1 540 540 0 859 ## 6 1 2013 2 1 552 600 -8 714 ## 7 1 2013 2 1 552 600 -8 919 ## 8 1 2013 2 1 552 600 -8 655 ## 9 1 2013 2 1 553 600 -7 833 ## 10 1 2013 2 1 553 600 -7 821 ## # ... with 53,076 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 추가 - bind_rows() 데이터를 구분하는 컬럼에 대해 이름이 동작하는 방식 ```r bind_rows(list(a = feb, b = dec), .id = "data") ``` ``` ## # A tibble: 53,086 x 20 ## data year month day dep_time sched_dep_time dep_delay arr_time ## <chr> <int> <int> <int> <int> <int> <dbl> <int> ## 1 a 2013 2 1 456 500 -4 652 ## 2 a 2013 2 1 520 525 -5 816 ## 3 a 2013 2 1 527 530 -3 837 ## 4 a 2013 2 1 532 540 -8 1007 ## 5 a 2013 2 1 540 540 0 859 ## 6 a 2013 2 1 552 600 -8 714 ## 7 a 2013 2 1 552 600 -8 919 ## 8 a 2013 2 1 552 600 -8 655 ## 9 a 2013 2 1 553 600 -7 833 ## 10 a 2013 2 1 553 600 -7 821 ## # ... with 53,076 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 추가 - bind_rows() 같은 이름의 컬럼이 없을 때는 NA로 채우면서 동작함 ```r bind_rows(data.frame(x = 1:3), data.frame(y = 1:4)) ``` ``` ## x y ## 1 1 NA ## 2 2 NA ## 3 3 NA ## 4 NA 1 ## 5 NA 2 ## 6 NA 3 ## 7 NA 4 ``` --- ### 행 방향: 정렬 - arrange() arrange()는 지정되는 컬럼 순으로 오름차순 정렬해주는 함수 ```r arrange(flights, dep_delay) ``` ``` ## # A tibble: 336,776 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 12 7 2040 2123 -43 40 ## 2 2013 2 3 2022 2055 -33 2240 ## 3 2013 11 10 1408 1440 -32 1549 ## 4 2013 1 11 1900 1930 -30 2233 ## 5 2013 1 29 1703 1730 -27 1947 ## 6 2013 8 9 729 755 -26 1002 ## 7 2013 10 23 1907 1932 -25 2143 ## 8 2013 3 30 2030 2055 -25 2213 ## 9 2013 3 2 1431 1455 -24 1601 ## 10 2013 5 5 934 958 -24 1225 ## # ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 행 방향: 정렬 - arrange() desc()는 내림차순 정렬로 방향을 바꾸는 helper 함수 ```r arrange(flights, desc(month), dep_delay) ``` ``` ## # A tibble: 336,776 x 19 ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 12 7 2040 2123 -43 40 ## 2 2013 12 25 2036 2059 -23 2313 ## 3 2013 12 4 1910 1930 -20 2101 ## 4 2013 12 11 710 730 -20 1039 ## 5 2013 12 10 1841 1900 -19 2028 ## 6 2013 12 14 921 940 -19 1256 ## 7 2013 12 6 811 829 -18 1119 ## 8 2013 12 30 657 715 -18 927 ## 9 2013 12 7 1658 1715 -17 1956 ## 10 2013 12 7 2043 2100 -17 2250 ## # ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ### 그룹 계산 - group_by() + summarise() summarise()는 여러 데이터를 요약하여 특성을 파악하는 방식으로 동작하는 함수들을 적용할 때 사용. ```r summarise(flights, mean = mean(dep_delay, na.rm=T), n = n()) ``` ``` ## # A tibble: 1 x 2 ## mean n ## <dbl> <int> ## 1 12.63907 336776 ``` --- ### 그룹 계산 - group_by() + summarise() group_by()는 데이터에 **지정한 컬럼별**이라는 추가 조건을 지정하는 기능을 수행 ```r flights_g<-group_by(flights, month) flights_g ``` ``` ## # A tibble: 336,776 x 19 ## # Groups: month [12] ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 1 1 517 515 2 830 ## 2 2013 1 1 533 529 4 850 ## 3 2013 1 1 542 540 2 923 ## 4 2013 1 1 544 545 -1 1004 ## 5 2013 1 1 554 600 -6 812 ## 6 2013 1 1 554 558 -4 740 ## 7 2013 1 1 555 600 -5 913 ## 8 2013 1 1 557 600 -3 709 ## 9 2013 1 1 557 600 -3 838 ## 10 2013 1 1 558 600 -2 753 ## # ... with 336,766 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` ```r summarise(flights_g, mean = mean(dep_delay, na.rm=T), n = n()) ``` ``` ## # A tibble: 12 x 3 ## month mean n ## <int> <dbl> <int> ## 1 1 10.036665 27004 ## 2 2 10.816843 24951 ## 3 3 13.227076 28834 ## 4 4 13.938038 28330 ## 5 5 12.986859 28796 ## 6 6 20.846332 28243 ## 7 7 21.727787 29425 ## 8 8 12.611040 29327 ## 9 9 6.722476 27574 ## 10 10 6.243988 28889 ## 11 11 5.435362 27268 ## 12 12 16.576688 28135 ``` --- ### 그룹 계산 - group_by() + summarise() group_by()에 의해 **지정한 컬럼별** summarise()연산을 수행함 ```r summarise(flights_g, mean = mean(dep_delay, na.rm=T), n = n()) ``` ``` ## # A tibble: 12 x 3 ## month mean n ## <int> <dbl> <int> ## 1 1 10.036665 27004 ## 2 2 10.816843 24951 ## 3 3 13.227076 28834 ## 4 4 13.938038 28330 ## 5 5 12.986859 28796 ## 6 6 20.846332 28243 ## 7 7 21.727787 29425 ## 8 8 12.611040 29327 ## 9 9 6.722476 27574 ## 10 10 6.243988 28889 ## 11 11 5.435362 27268 ## 12 12 16.576688 28135 ``` --- ### 열 결합(Join) - left_join() select()를 사용하여 데이터 준비 ```r flights2 <- select(flights, year:day, hour, origin, dest, tailnum, carrier) flights2 ``` ``` ## # A tibble: 336,776 x 8 ## year month day hour origin dest tailnum carrier ## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> ## 1 2013 1 1 5 EWR IAH N14228 UA ## 2 2013 1 1 5 LGA IAH N24211 UA ## 3 2013 1 1 5 JFK MIA N619AA AA ## 4 2013 1 1 5 JFK BQN N804JB B6 ## 5 2013 1 1 6 LGA ATL N668DN DL ## 6 2013 1 1 5 EWR ORD N39463 UA ## 7 2013 1 1 6 EWR FLL N516JB B6 ## 8 2013 1 1 6 LGA IAD N829AS EV ## 9 2013 1 1 6 JFK MCO N593JB B6 ## 10 2013 1 1 6 LGA ORD N3ALAA AA ## # ... with 336,766 more rows ``` --- ### 열 결합(Join) - left_join() left_join()은 왼쪽 데이터를 기준으로 하고, by로 지정된 컬럼이 같은 데이터임을 식별하는 key로 지정하여 오른쪽 데이터를 왼쪽 데이터에 결합하는 함수 ```r left_join(flights2, airlines, by = "carrier") ``` ``` ## # A tibble: 336,776 x 9 ## year month day hour origin dest tailnum carrier ## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> ## 1 2013 1 1 5 EWR IAH N14228 UA ## 2 2013 1 1 5 LGA IAH N24211 UA ## 3 2013 1 1 5 JFK MIA N619AA AA ## 4 2013 1 1 5 JFK BQN N804JB B6 ## 5 2013 1 1 6 LGA ATL N668DN DL ## 6 2013 1 1 5 EWR ORD N39463 UA ## 7 2013 1 1 6 EWR FLL N516JB B6 ## 8 2013 1 1 6 LGA IAD N829AS EV ## 9 2013 1 1 6 JFK MCO N593JB B6 ## 10 2013 1 1 6 LGA ORD N3ALAA AA ## # ... with 336,766 more rows, and 1 more variables: name <chr> ``` --- ### 열 결합(Join) - left_join() mutate(), match()등의 함수로 구현하려면 아래와 같음 ```r mutate(flights2, name = airlines$name[match(carrier, airlines$carrier)]) ``` ``` ## # A tibble: 336,776 x 9 ## year month day hour origin dest tailnum carrier ## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> ## 1 2013 1 1 5 EWR IAH N14228 UA ## 2 2013 1 1 5 LGA IAH N24211 UA ## 3 2013 1 1 5 JFK MIA N619AA AA ## 4 2013 1 1 5 JFK BQN N804JB B6 ## 5 2013 1 1 6 LGA ATL N668DN DL ## 6 2013 1 1 5 EWR ORD N39463 UA ## 7 2013 1 1 6 EWR FLL N516JB B6 ## 8 2013 1 1 6 LGA IAD N829AS EV ## 9 2013 1 1 6 JFK MCO N593JB B6 ## 10 2013 1 1 6 LGA ORD N3ALAA AA ## # ... with 336,766 more rows, and 1 more variables: name <chr> ``` --- ### 열 결합(Join) - left_join() key 역할을 할 컬럼을 지정하지 않으면 양쪽 데이터에서 컬럼 이름이 같은 모든 컬럼을 key로 자동 지정 ```r left_join(flights2, weather) ``` ``` ## Joining, by = c("year", "month", "day", "hour", "origin") ``` ``` ## # A tibble: 336,776 x 18 ## year month day hour origin dest tailnum carrier temp dewp humid ## <dbl> <dbl> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> ## 1 2013 1 1 5 EWR IAH N14228 UA NA NA NA ## 2 2013 1 1 5 LGA IAH N24211 UA NA NA NA ## 3 2013 1 1 5 JFK MIA N619AA AA NA NA NA ## 4 2013 1 1 5 JFK BQN N804JB B6 NA NA NA ## 5 2013 1 1 6 LGA ATL N668DN DL 39.92 26.06 57.33 ## 6 2013 1 1 5 EWR ORD N39463 UA NA NA NA ## 7 2013 1 1 6 EWR FLL N516JB B6 39.02 26.06 59.37 ## 8 2013 1 1 6 LGA IAD N829AS EV 39.92 26.06 57.33 ## 9 2013 1 1 6 JFK MCO N593JB B6 39.02 26.06 59.37 ## 10 2013 1 1 6 LGA ORD N3ALAA AA 39.92 26.06 57.33 ## # ... with 336,766 more rows, and 7 more variables: wind_dir <dbl>, ## # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>, ## # visib <dbl>, time_hour <dttm> ``` --- ### 열 결합(Join) - left_join() 여러 컬럼이 key로써 가능할 때 명시적인 지정이 있으면 작성된 컬럼만 key로 동작 ```r left_join(flights2, planes, by = "tailnum") ``` ``` ## # A tibble: 336,776 x 16 ## year.x month day hour origin dest tailnum carrier year.y ## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int> ## 1 2013 1 1 5 EWR IAH N14228 UA 1999 ## 2 2013 1 1 5 LGA IAH N24211 UA 1998 ## 3 2013 1 1 5 JFK MIA N619AA AA 1990 ## 4 2013 1 1 5 JFK BQN N804JB B6 2012 ## 5 2013 1 1 6 LGA ATL N668DN DL 1991 ## 6 2013 1 1 5 EWR ORD N39463 UA 2012 ## 7 2013 1 1 6 EWR FLL N516JB B6 2000 ## 8 2013 1 1 6 LGA IAD N829AS EV 1998 ## 9 2013 1 1 6 JFK MCO N593JB B6 2004 ## 10 2013 1 1 6 LGA ORD N3ALAA AA NA ## # ... with 336,766 more rows, and 7 more variables: type <chr>, ## # manufacturer <chr>, model <chr>, engines <int>, seats <int>, ## # speed <int>, engine <chr> ``` --- ### 열 결합(Join) - left_join() 여러 컬럼이 key로 동작했을 때 데이터가 잘못 되는 예 ```r left_join(flights2, planes) ``` ``` ## Joining, by = c("year", "tailnum") ``` ``` ## # A tibble: 336,776 x 15 ## year month day hour origin dest tailnum carrier type manufacturer ## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> ## 1 2013 1 1 5 EWR IAH N14228 UA <NA> <NA> ## 2 2013 1 1 5 LGA IAH N24211 UA <NA> <NA> ## 3 2013 1 1 5 JFK MIA N619AA AA <NA> <NA> ## 4 2013 1 1 5 JFK BQN N804JB B6 <NA> <NA> ## 5 2013 1 1 6 LGA ATL N668DN DL <NA> <NA> ## 6 2013 1 1 5 EWR ORD N39463 UA <NA> <NA> ## 7 2013 1 1 6 EWR FLL N516JB B6 <NA> <NA> ## 8 2013 1 1 6 LGA IAD N829AS EV <NA> <NA> ## 9 2013 1 1 6 JFK MCO N593JB B6 <NA> <NA> ## 10 2013 1 1 6 LGA ORD N3ALAA AA <NA> <NA> ## # ... with 336,766 more rows, and 5 more variables: model <chr>, ## # engines <int>, seats <int>, speed <int>, engine <chr> ``` --- ### 열 결합(Join) - left_join() 컬럼 이름이 다를 때는 아래와 같은 문법을 사용 ```r left_join(flights2, airports, c("dest" = "faa")) ``` ``` ## # A tibble: 336,776 x 15 ## year month day hour origin dest tailnum carrier ## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> ## 1 2013 1 1 5 EWR IAH N14228 UA ## 2 2013 1 1 5 LGA IAH N24211 UA ## 3 2013 1 1 5 JFK MIA N619AA AA ## 4 2013 1 1 5 JFK BQN N804JB B6 ## 5 2013 1 1 6 LGA ATL N668DN DL ## 6 2013 1 1 5 EWR ORD N39463 UA ## 7 2013 1 1 6 EWR FLL N516JB B6 ## 8 2013 1 1 6 LGA IAD N829AS EV ## 9 2013 1 1 6 JFK MCO N593JB B6 ## 10 2013 1 1 6 LGA ORD N3ALAA AA ## # ... with 336,766 more rows, and 7 more variables: name <chr>, lat <dbl>, ## # lon <dbl>, alt <int>, tz <dbl>, dst <chr>, tzone <chr> ``` --- ### 열 결합(Join) - left_join() rename()을 이용해 맞추는 방법도 가능 ```r left_join(flights2, rename(airports, dest=faa), by="dest") ``` ``` ## # A tibble: 336,776 x 15 ## year month day hour origin dest tailnum carrier ## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> ## 1 2013 1 1 5 EWR IAH N14228 UA ## 2 2013 1 1 5 LGA IAH N24211 UA ## 3 2013 1 1 5 JFK MIA N619AA AA ## 4 2013 1 1 5 JFK BQN N804JB B6 ## 5 2013 1 1 6 LGA ATL N668DN DL ## 6 2013 1 1 5 EWR ORD N39463 UA ## 7 2013 1 1 6 EWR FLL N516JB B6 ## 8 2013 1 1 6 LGA IAD N829AS EV ## 9 2013 1 1 6 JFK MCO N593JB B6 ## 10 2013 1 1 6 LGA ORD N3ALAA AA ## # ... with 336,766 more rows, and 7 more variables: name <chr>, lat <dbl>, ## # lon <dbl>, alt <int>, tz <dbl>, dst <chr>, tzone <chr> ``` --- class: center, middle, title-slide ## tidy data, long form과 wide form --- class: center, middle, title-slide # tidy data + universe [][1] --- ## [tidyverse][1] 패키지는 .pull-left[ 1. RStudio가 개발, 관리하는 패키지 1. 공식 문서가 매우 잘 되어 있음 1. 사용자층이 두터워 영어로 검색하면 많은 질답을 찾을 수 있음 1. 커뮤니티 설명글도 매우 많음 1. 6개의 핵심 패키지 포함 23가지 패키지로 이루어진 메타 패키지 1. tidy data 라는 사상과 파이프 연산자로 대동단결 1. 사상에 영감을 받아 맞춰서 제작하는 개인 패키지가 많음(ex> [tidyquant](https://github.com/business-science/tidyquant), [tidytext](https://github.com/juliasilge/tidytext) 등) ] .pull-right[ ```r if (!requireNamespace("tidyverse")){ install.packages("tidyverse")} ``` ``` ## Loading required namespace: tidyverse ``` ```r library(tidyverse) ``` ``` ## Loading tidyverse: ggplot2 ## Loading tidyverse: tibble ## Loading tidyverse: tidyr ## Loading tidyverse: readr ## Loading tidyverse: purrr ``` ``` ## Conflicts with tidy packages ---------------------------------------------- ``` ``` ## filter(): dplyr, stats ## lag(): dplyr, stats ``` ] --- ## tidy data 란 1. [Hadley Wickham](https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html) 2. [고감자님의 블로그](http://freesearch.pe.kr/archives/3942) 3. [헬로우데이터과학](http://www.hellodatascience.com/?p=287) 1.1 Each variable forms a column. 1.2 각 변수는 개별의 열(column)으로 존재한다. 1.3 각 열에는 개별 속성이 들어간다. 2.1 Each observation forms a row. 2.2 각 관측치는 행(row)를 구성한다. 2.3 각 행에는 개별 관찰 항목이 들어간다. 3.1 Each type of observational unit forms a table. 3.2 각 테이블은 단 하나의 관측기준에 의해서 조직된 데이터를 저장한다. 3.3 각 테이블에는 단일 유형의 데이터가 들어간다. .footnote[ \* 출처 : [금융데이터 분석을 위한 R 입문][2] ] --- ## tidy data 란  .footnote[ \* 출처 : [Garrett Grolemund의 Data Science with R 블로그](http://garrettgman.github.io/tidying/) ] --- ## long form vs wide form .pull-left[ ### long form 1. 컴퓨터가 계산하기 좋은 모양 1. tidy data의 요건을 충족 1. tidyverse의 패키지 대부분의 입력 형태 ] .pull-right[ ### wide form 1. 사람이 눈으로 보기 좋은 모양 1. 2개 변수에 대한 값만 확인 가능 1. dashboard 형이라고도 하며 조인 등 연산이 어려움 ] --- class: center, middle, title-slide ## 함수를 연결하는 파이프 연산자(%>%)  --- ## 파이프 연산자(%>%) 함수를 중첩해서 사용할 일이 점점 빈번해 짐 ```{} plot(diff(log(sample(rnorm(10000,mean=10,sd=1),size=100,replace=FALSE))),col="red",type="l") ``` -- ### %>%를 사용하면 .pull-left[ 1. 생각의 순서대로 함수를 작성할 수 있음 1. 중간 변수 저장을 할 필요가 없음 1. 순서가 읽이 용이하여 기억하기 좋음 ] .pull-right[ ```{} rnorm(10000,mean=10,sd=1) %>% sample(size=100,replace=FALSE) %>% log %>% diff %>% plot(col="red",type="l") ``` ] --- ## 파이프 연산자(%>%) flights 데이터에 파이프 연산자 사용예 1 ```r flights %>% group_by(year,month,day) %>% summarise(delay=mean(dep_delay, na.rm = TRUE)) ``` ``` ## # A tibble: 365 x 4 ## # Groups: year, month [?] ## year month day delay ## <int> <int> <int> <dbl> ## 1 2013 1 1 11.548926 ## 2 2013 1 2 13.858824 ## 3 2013 1 3 10.987832 ## 4 2013 1 4 8.951595 ## 5 2013 1 5 5.732218 ## 6 2013 1 6 7.148014 ## 7 2013 1 7 5.417204 ## 8 2013 1 8 2.553073 ## 9 2013 1 9 2.276477 ## 10 2013 1 10 2.844995 ## # ... with 355 more rows ``` --- ## 파이프 연산자(%>%) group_by()는 filter()와도 함께 사용할 수 있음 ```r popular_dests <- flights %>% group_by(dest) %>% filter(n() > 365) popular_dests ``` ``` ## # A tibble: 332,577 x 19 ## # Groups: dest [77] ## year month day dep_time sched_dep_time dep_delay arr_time ## <int> <int> <int> <int> <int> <dbl> <int> ## 1 2013 1 1 517 515 2 830 ## 2 2013 1 1 533 529 4 850 ## 3 2013 1 1 542 540 2 923 ## 4 2013 1 1 544 545 -1 1004 ## 5 2013 1 1 554 600 -6 812 ## 6 2013 1 1 554 558 -4 740 ## 7 2013 1 1 555 600 -5 913 ## 8 2013 1 1 557 600 -3 709 ## 9 2013 1 1 557 600 -3 838 ## 10 2013 1 1 558 600 -2 753 ## # ... with 332,567 more rows, and 12 more variables: sched_arr_time <int>, ## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, ## # minute <dbl>, time_hour <dttm> ``` --- ## 파이프 연산자(%>%) 사용할 데이터부터 순서대로 함수를 작성할 수 있는 장점 ```r popular_dests %>% filter(arr_delay > 0) %>% mutate(prop_delay = arr_delay / sum(arr_delay)) %>% select(year:day, dest, arr_delay, prop_delay) ``` ``` ## # A tibble: 131,106 x 6 ## # Groups: dest [77] ## year month day dest arr_delay prop_delay ## <int> <int> <int> <chr> <dbl> <dbl> ## 1 2013 1 1 IAH 11 1.106740e-04 ## 2 2013 1 1 IAH 20 2.012255e-04 ## 3 2013 1 1 MIA 33 2.350026e-04 ## 4 2013 1 1 ORD 12 4.239594e-05 ## 5 2013 1 1 FLL 19 9.377853e-05 ## 6 2013 1 1 ORD 8 2.826396e-05 ## 7 2013 1 1 LAX 7 3.444441e-05 ## 8 2013 1 1 DFW 31 2.817951e-04 ## 9 2013 1 1 ATL 12 3.996017e-05 ## 10 2013 1 1 DTW 16 1.157257e-04 ## # ... with 131,096 more rows ``` --- class: center, middle, title-slide [][4] --- ## tidyr이 데이터를 tidy하게 만드는 4개 함수 [tidyr][4]은 데이터를 tidy하게 만드는 4개 함수를 제공하고 추가적인 helper 함수를 함께 제공 1. gather() : wide form 데이터를 long form 으로 변환 1. spread() : long form 데이터를 wide form 으로 변환 1. separate() : 하나의 컬럼을 두 개로 나눔 1. unite() : 두 개의 컬럼을 하나로 합침 --- ## tidyr 준비 tidyr, dplyr은 tidyverse에 포함된 패키지이기 때문에 tidyverse를 설치하고 불러왔다면 생략가능 ```r if (!requireNamespace("tidyr")) install.packages("tidyr") library(tidyr) ``` --- ### 데이터 소개 tidyr 패키지는 패키지의 동작을 설명하기 위해 내장 데이터를 준비하고 있음 ```r table1 ``` ``` ## # A tibble: 6 x 4 ## country year cases population ## <chr> <int> <int> <int> ## 1 Afghanistan 1999 745 19987071 ## 2 Afghanistan 2000 2666 20595360 ## 3 Brazil 1999 37737 172006362 ## 4 Brazil 2000 80488 174504898 ## 5 China 1999 212258 1272915272 ## 6 China 2000 213766 1280428583 ``` --- ### 데이터 소개 long form 예시 ```r table2 ``` ``` ## # A tibble: 12 x 4 ## country year type count ## <chr> <int> <chr> <int> ## 1 Afghanistan 1999 cases 745 ## 2 Afghanistan 1999 population 19987071 ## 3 Afghanistan 2000 cases 2666 ## 4 Afghanistan 2000 population 20595360 ## 5 Brazil 1999 cases 37737 ## 6 Brazil 1999 population 172006362 ## 7 Brazil 2000 cases 80488 ## 8 Brazil 2000 population 174504898 ## 9 China 1999 cases 212258 ## 10 China 1999 population 1272915272 ## 11 China 2000 cases 213766 ## 12 China 2000 population 1280428583 ``` --- ### 데이터 소개 한 컬럼에 두 개의 의미를 지닌 데이터가 들어 있는 경우 ```r table3 ``` ``` ## # A tibble: 6 x 3 ## country year rate ## * <chr> <int> <chr> ## 1 Afghanistan 1999 745/19987071 ## 2 Afghanistan 2000 2666/20595360 ## 3 Brazil 1999 37737/172006362 ## 4 Brazil 2000 80488/174504898 ## 5 China 1999 212258/1272915272 ## 6 China 2000 213766/1280428583 ``` --- ### 데이터 소개 wide form 예시 1 ```r table4a ``` ``` ## # A tibble: 3 x 3 ## country `1999` `2000` ## * <chr> <int> <int> ## 1 Afghanistan 745 2666 ## 2 Brazil 37737 80488 ## 3 China 212258 213766 ``` --- ### 데이터 소개 wide form 예시 2 ```r table4b ``` ``` ## # A tibble: 3 x 3 ## country `1999` `2000` ## * <chr> <int> <int> ## 1 Afghanistan 19987071 20595360 ## 2 Brazil 172006362 174504898 ## 3 China 1272915272 1280428583 ``` --- ### wide to long - gather() gather()는 wide form의 데이터를 long form으로 바꾸는 역할을 수행. gather(data, key = "컬럼 이름이 데이터로 들어갈 그 컬럼의 이름", value = "매트릭스로 펼쳐져 있는 데이터가 모이는 컬럼의 이름", "데이터로 들어갈 컬럼들을 지정")의 형태로 작성. "데이터로 들어갈 컬럼들을 지정"은 위치에 자유로움. .pull-left[ 값에 해당하는 데이터의 이동이 중요함. 메트릭스 모양이 한 줄의 컬럼으로 변경되는 것을 확인 ```r table4a ``` ``` ## # A tibble: 3 x 3 ## country `1999` `2000` ## * <chr> <int> <int> ## 1 Afghanistan 745 2666 ## 2 Brazil 37737 80488 ## 3 China 212258 213766 ``` ] .pull-right[ ```r table4a %>% gather(`1999`, `2000` , key = "year" , value = "cases") ``` ``` ## # A tibble: 6 x 3 ## country year cases ## <chr> <chr> <int> ## 1 Afghanistan 1999 745 ## 2 Brazil 1999 37737 ## 3 China 1999 212258 ## 4 Afghanistan 2000 2666 ## 5 Brazil 2000 80488 ## 6 China 2000 213766 ``` ] --- ### gather()의 동작 값에 해당하는 데이터는 matrix -> column, 지정한 컬럼들은 key의 데이터로 변경  --- ### long to wide - spread() spread()는 하나의 컬럼으로 되어 있는 데이터를 메트릭스의 형태로 **흩뿌리는** 동작을 수행. spread(data, key = "컬럼에 위치할 데이터가 있는 컬럼", value = "메트릭스 모양이로 펼쳐질 데이터가 있는 컬럼") 으로 작성 .pull-left[ ```r table2 ``` ``` ## # A tibble: 12 x 4 ## country year type count ## <chr> <int> <chr> <int> ## 1 Afghanistan 1999 cases 745 ## 2 Afghanistan 1999 population 19987071 ## 3 Afghanistan 2000 cases 2666 ## 4 Afghanistan 2000 population 20595360 ## 5 Brazil 1999 cases 37737 ## 6 Brazil 1999 population 172006362 ## 7 Brazil 2000 cases 80488 ## 8 Brazil 2000 population 174504898 ## 9 China 1999 cases 212258 ## 10 China 1999 population 1272915272 ## 11 China 2000 cases 213766 ## 12 China 2000 population 1280428583 ``` ] .pull-right[ ```r table2 %>% spread(key = type, value = count) ``` ``` ## # A tibble: 6 x 4 ## country year cases population ## * <chr> <int> <int> <int> ## 1 Afghanistan 1999 745 19987071 ## 2 Afghanistan 2000 2666 20595360 ## 3 Brazil 1999 37737 172006362 ## 4 Brazil 2000 80488 174504898 ## 5 China 1999 212258 1272915272 ## 6 China 2000 213766 1280428583 ``` ] --- ### spread()의 동작  --- ### 하나의 컬럼을 나누기 - separate() 아래와 같이 여러 부호로 그 의미가 나누어져있지만 한 컬럼에 데이터가 있는 경우 컬럼을 의미 단위로 분리하는 역할을 수행. into = c("나눠질 때 첫번째 컬럼 이름","나눠질 때 두번째 컬럼 이름")으로 새로 생성되는 컬럼의 이름을 지정할 수 있음 .pull-left[ ```r table3 ``` ``` ## # A tibble: 6 x 3 ## country year rate ## * <chr> <int> <chr> ## 1 Afghanistan 1999 745/19987071 ## 2 Afghanistan 2000 2666/20595360 ## 3 Brazil 1999 37737/172006362 ## 4 Brazil 2000 80488/174504898 ## 5 China 1999 212258/1272915272 ## 6 China 2000 213766/1280428583 ``` ] .pull-right[ ```r table3 %>% separate(rate ,into = c("cases", "population")) ``` ``` ## # A tibble: 6 x 4 ## country year cases population ## * <chr> <int> <chr> <chr> ## 1 Afghanistan 1999 745 19987071 ## 2 Afghanistan 2000 2666 20595360 ## 3 Brazil 1999 37737 172006362 ## 4 Brazil 2000 80488 174504898 ## 5 China 1999 212258 1272915272 ## 6 China 2000 213766 1280428583 ``` ] --- ### 간단한 형변환은 옵션으로 제공 .pull-left[ ```r table3 %>% separate(rate , into = c("cases" , "population") ) ``` ``` ## # A tibble: 6 x 4 ## country year cases population ## * <chr> <int> <chr> <chr> ## 1 Afghanistan 1999 745 19987071 ## 2 Afghanistan 2000 2666 20595360 ## 3 Brazil 1999 37737 172006362 ## 4 Brazil 2000 80488 174504898 ## 5 China 1999 212258 1272915272 ## 6 China 2000 213766 1280428583 ``` ] .pull-right[ ```r table3 %>% separate(rate , into = c("cases" , "population") , convert = TRUE) ``` ``` ## # A tibble: 6 x 4 ## country year cases population ## * <chr> <int> <int> <int> ## 1 Afghanistan 1999 745 19987071 ## 2 Afghanistan 2000 2666 20595360 ## 3 Brazil 1999 37737 172006362 ## 4 Brazil 2000 80488 174504898 ## 5 China 1999 212258 1272915272 ## 6 China 2000 213766 1280428583 ``` ] --- ### 두 컬럼을 합치기 - unite() unite()는 두 컬럼을 paste0()와 비슷하게 합쳐주는 역할을 수행 .pull-left[ ```r table5 ``` ``` ## # A tibble: 6 x 4 ## country century year rate ## * <chr> <chr> <chr> <chr> ## 1 Afghanistan 19 99 745/19987071 ## 2 Afghanistan 20 00 2666/20595360 ## 3 Brazil 19 99 37737/172006362 ## 4 Brazil 20 00 80488/174504898 ## 5 China 19 99 212258/1272915272 ## 6 China 20 00 213766/1280428583 ``` ] .pull-right[ ```r table5 %>% unite(new, century, year) ``` ``` ## # A tibble: 6 x 3 ## country new rate ## * <chr> <chr> <chr> ## 1 Afghanistan 19_99 745/19987071 ## 2 Afghanistan 20_00 2666/20595360 ## 3 Brazil 19_99 37737/172006362 ## 4 Brazil 20_00 80488/174504898 ## 5 China 19_99 212258/1272915272 ## 6 China 20_00 213766/1280428583 ``` ] --- ### 구분자 지정 sep 인자를 이용해 구분자로 사용할 문자열을 지정할 수 있음 .pull-left[ ```r table5 %>% unite(new, century, year) ``` ``` ## # A tibble: 6 x 3 ## country new rate ## * <chr> <chr> <chr> ## 1 Afghanistan 19_99 745/19987071 ## 2 Afghanistan 20_00 2666/20595360 ## 3 Brazil 19_99 37737/172006362 ## 4 Brazil 20_00 80488/174504898 ## 5 China 19_99 212258/1272915272 ## 6 China 20_00 213766/1280428583 ``` ] .pull-right[ ```r table5 %>% unite(new, century, year, sep = "") ``` ``` ## # A tibble: 6 x 3 ## country new rate ## * <chr> <chr> <chr> ## 1 Afghanistan 1999 745/19987071 ## 2 Afghanistan 2000 2666/20595360 ## 3 Brazil 1999 37737/172006362 ## 4 Brazil 2000 80488/174504898 ## 5 China 1999 212258/1272915272 ## 6 China 2000 213766/1280428583 ``` ] --- class: center, middle, title-slide ## 데이터 소스에 연결하기 --- ## 데이터 소스로서 DBI DBI 패키지가 연결하는 database의 연결정보를 바탕으로 dplyr 문법을 사용할 수 있습니다. 그렇게 하기 위해서는 dbplyr 패키지가 필요합니다. ```r if (!requireNamespace("dbplyr")) install.packages("dbplyr") ``` ``` ## Loading required namespace: dbplyr ``` ``` ## Installing package into 'C:/Users/mrchypark/Documents/R/win-library/3.4' ## (as 'lib' is unspecified) ``` ``` ## package 'dbplyr' successfully unpacked and MD5 sums checked ## ## The downloaded binary packages are in ## C:\Users\mrchypark\AppData\Local\Temp\RtmpGkwJOm\downloaded_packages ``` ```r library(dbplyr) ``` ``` ## ## Attaching package: 'dbplyr' ``` ``` ## The following objects are masked from 'package:dplyr': ## ## ident, sql ``` --- ### data.table 데이터 소스로서 data.table을 사용할 수 있습니다. data.table을 사용하기 위해서는 dtplyr 패키지를 설치해야 합니다. data.table의 독립적인 동작은 [cheat sheet](https://s3.amazonaws.com/assets.datacamp.com/img/blog/data+table+cheat+sheet.pdf)을 확인해주세요. ```r if (!requireNamespace("dtplyr")) install.packages("dtplyr") ``` ``` ## Loading required namespace: dtplyr ``` ``` ## Installing package into 'C:/Users/mrchypark/Documents/R/win-library/3.4' ## (as 'lib' is unspecified) ``` ``` ## package 'dtplyr' successfully unpacked and MD5 sums checked ## ## The downloaded binary packages are in ## C:\Users\mrchypark\AppData\Local\Temp\RtmpGkwJOm\downloaded_packages ``` ```r library(dtplyr) ``` --- ## R 데이터를 DB 테이블로 만들기 copy_to() copy_to()는 DBI의 dbWriteTable()과 같은 기능을 수행. dplyr 패키지에 속한 copy_to()는 성능 개선을 통해 dbWriteTable() 보다 빠른 속도를 제공함 ```r library(RSQLite) library(nycflights13) conn <- dbConnect(SQLite()) copy_to(conn , flights , temporary = FALSE , name = 'flights') dbListTables(conn) ``` ``` ## [1] "flights" "sqlite_stat1" "sqlite_stat4" ``` --- ## 테이블의 연결정보를 R 객체에 저장 - tbl() dbplyr과 DBI, dplyr로 데이터베이스의 테이블을 dplyr 문법으로 다루기 위해서는 DBI 패키지에서 conn 객체와 같이 테이블의 연결정보를 담고 있는 R 객체가 필요. tbl()는 DB내 테이블 연결정보를 R 객체로 만드는 함수 ```r tb_flights <- tbl(conn, "flights") ``` --- ### 속도를 빠르게 하는 indexes 옵션 copy_to()를 진행할 때 key 역할을 수행할 컬럼을 미리 지정해주면 관련 컬럼을 사용하는 연산(group_by에 key 컬럼 사용 등)에서 속도를 높일 있음 ```r copy_to(conn, flights, name = 'flights_idx', temporary = FALSE, indexes = list("carrier")) tb_flights <- tbl(conn, "flights") tb_flights_idx <- tbl(conn, "flights_idx") ``` --- ### 함수 속도를 비교 - microbenchmark() 함수의 속도와 결과를 비교해서 같은 결과에 빠른 속도의 함수를 사용하기 위해 비교 테스트를 진행 ```r if (!requireNamespace("microbenchmark")) install.packages("microbenchmark") ``` ``` ## Loading required namespace: microbenchmark ``` ``` ## Installing package into 'C:/Users/mrchypark/Documents/R/win-library/3.4' ## (as 'lib' is unspecified) ``` ``` ## package 'microbenchmark' successfully unpacked and MD5 sums checked ## ## The downloaded binary packages are in ## C:\Users\mrchypark\AppData\Local\Temp\RtmpGkwJOm\downloaded_packages ``` ```r library(microbenchmark) ``` --- ### indexes 속도 비교 ```r microbenchmark(tbl(conn, 'flights') %>% group_by(carrier) %>% summarise(count = n()) %>% collect(), tbl(conn, 'flights_idx') %>% group_by(carrier) %>% summarise(count = n()) %>% collect(), times = 10) ``` ``` ## Unit: milliseconds ## expr ## tbl(conn, "flights") %>% group_by(carrier) %>% summarise(count = n()) %>% collect() ## tbl(conn, "flights_idx") %>% group_by(carrier) %>% summarise(count = n()) %>% collect() ## min lq mean median uq max neval ## 159.51046 177.37830 205.03707 194.09691 234.1822 290.87159 10 ## 37.43287 37.84492 47.45835 44.17065 53.8540 68.35395 10 ``` --- ### collect() collect()는 DB에 전달하는 명령의 최종 결과를 R 객체로 가져오는 역할을 수행합니다. ```r tbl(conn, 'flights') %>% group_by(carrier) %>% summarise(count = n()) %>% collect() ``` ``` ## # A tibble: 16 x 2 ## carrier count ## <chr> <int> ## 1 9E 18460 ## 2 AA 32729 ## 3 AS 714 ## 4 B6 54635 ## 5 DL 48110 ## 6 EV 54173 ## 7 F9 685 ## 8 FL 3260 ## 9 HA 342 ## 10 MQ 26397 ## 11 OO 32 ## 12 UA 58665 ## 13 US 20536 ## 14 VX 5162 ## 15 WN 12275 ## 16 YV 601 ``` --- ### 결과를 테이블로 저장 - compute() compute()는 collect()와는 달리 연산된 결과를 R 객체로 저장하는 것이 아니라 새로 이름지은 테이블로 DB에 저장하는 동작을 수행 ```r dbListTables(conn) ``` ``` ## [1] "flights" "flights_idx" "sqlite_stat1" "sqlite_stat4" ``` ```r tbl(conn, 'flights') %>% group_by(tailnum) %>% summarise(count=n(), mean_distance = mean(distance), total_distance = sum(distance)) %>% filter(!is.na(tailnum)) %>% compute(name = 'planes_distance') ``` ``` ## # Source: table<planes_distance> [?? x 4] ## # Database: sqlite 3.19.3 [] ## tailnum count mean_distance total_distance ## <chr> <int> <dbl> <dbl> ## 1 D942DN 4 854.5000 3418 ## 2 N0EGMQ 371 676.1887 250866 ## 3 N10156 153 757.9477 115966 ## 4 N102UW 48 535.8750 25722 ## 5 N103US 46 535.1957 24619 ## 6 N104UW 47 535.2553 25157 ## 7 N10575 289 519.7024 150194 ## 8 N105UW 45 524.8444 23618 ## 9 N107US 41 528.7073 21677 ## 10 N108UW 60 534.5000 32070 ## # ... with more rows ``` --- ### 테이블 저장 결과 확인 ```r dbListTables(conn) ``` ``` ## [1] "flights" "flights_idx" "planes_distance" "sqlite_stat1" ## [5] "sqlite_stat4" ``` ```r dbReadTable(conn, "planes_distance") ``` ``` ## tailnum count mean_distance total_distance ## 1 D942DN 4 854.5000 3418 ## 2 N0EGMQ 371 676.1887 250866 ## 3 N10156 153 757.9477 115966 ## 4 N102UW 48 535.8750 25722 ## 5 N103US 46 535.1957 24619 ## 6 N104UW 47 535.2553 25157 ## 7 N10575 289 519.7024 150194 ## 8 N105UW 45 524.8444 23618 ## 9 N107US 41 528.7073 21677 ## 10 N108UW 60 534.5000 32070 ## 11 N109UW 48 535.8750 25722 ## 12 N110UW 40 535.3750 21415 ## 13 N11106 129 771.4109 99512 ## 14 N11107 148 705.8649 104468 ## 15 N11109 148 714.0000 105672 ## 16 N11113 138 719.7754 99329 ## 17 N11119 148 723.3851 107061 ## 18 N11121 154 719.3701 110783 ## 19 N11127 124 748.1129 92766 ## 20 N11137 112 726.5982 81379 ## 21 N11140 157 747.2102 117312 ## 22 N11150 136 775.5588 105476 ## 23 N11155 98 779.1224 76354 ## 24 N11164 143 677.4476 96875 ## 25 N11165 159 752.8805 119708 ## 26 N11176 142 729.0704 103528 ## 27 N11181 125 705.4160 88177 ## 28 N11184 136 744.0515 101191 ## 29 N11187 133 733.8872 97607 ## 30 N11189 140 684.2714 95798 ## 31 N11191 136 734.3750 99875 ## 32 N11192 154 703.5000 108339 ## 33 N11193 161 697.7888 112344 ## 34 N11194 156 715.5962 111633 ## 35 N11199 126 718.4762 90528 ## 36 N111US 30 535.6000 16068 ## 37 N11206 111 1414.0090 156955 ## 38 N112US 38 535.4737 20348 ## 39 N113UW 43 534.7209 22993 ## 40 N114UW 39 525.9231 20511 ## 41 N11535 232 520.3664 120725 ## 42 N11536 277 503.3538 139429 ## 43 N11539 229 497.2052 113860 ## 44 N11544 226 507.9867 114805 ## 45 N11547 266 527.6090 140344 ## 46 N11548 247 515.9069 127429 ## 47 N11551 242 517.9711 125349 ## 48 N11565 243 498.2140 121066 ## 49 N117UW 46 536.5000 24679 ## 50 N118US 43 533.6047 22945 ## 51 N119US 39 536.6154 20928 ## 52 N1200K 21 2046.4762 42976 ## 53 N1201P 16 1767.1250 28274 ## 54 N12109 86 1687.6860 145141 ## 55 N12114 68 1435.7059 97628 ## 56 N12116 78 1505.7949 117452 ## 57 N12122 128 665.0156 85122 ## 58 N12125 94 1573.2979 147890 ## 59 N12126 152 730.9474 111104 ## 60 N12135 143 749.4965 107178 ## 61 N12136 123 760.7724 93575 ## 62 N12142 129 761.1395 98187 ## 63 N12145 85 748.9176 63658 ## 64 N12157 144 734.6736 105793 ## 65 N12160 116 757.2672 87843 ## 66 N12163 137 779.3431 106770 ## 67 N12166 125 746.1280 93266 ## 68 N12167 156 705.8974 110120 ## 69 N12172 132 731.8258 96601 ## 70 N12175 171 729.6491 124770 ## 71 N12195 148 709.8243 105054 ## 72 N121DE 2 762.0000 1524 ## 73 N121UW 31 536.1613 16621 ## 74 N12201 130 697.6385 90693 ## 75 N12216 103 1592.7864 164057 ## 76 N12218 111 1423.1532 157970 ## 77 N12221 124 1368.2903 169668 ## 78 N12225 113 1270.8142 143602 ## 79 N12238 94 1457.6064 137015 ## 80 N122US 45 536.4000 24138 ## 81 N123UW 33 532.9091 17586 ## 82 N124US 46 536.9565 24700 ## 83 N12540 225 480.5333 108120 ## 84 N12552 244 562.9877 137369 ## 85 N12563 202 513.9109 103810 ## 86 N12564 250 505.8560 126464 ## 87 N12567 274 508.2518 139261 ## 88 N12569 237 516.9916 122527 ## 89 N125UW 35 534.1429 18695 ## 90 N126UW 44 533.5682 23477 ## 91 N127UW 42 536.5714 22536 ## 92 N128UW 39 536.0000 20904 ## 93 N12900 237 548.3586 129961 ## 94 N12921 280 514.6536 144103 ## 95 N12922 243 512.1029 124441 ## 96 N12924 245 523.1224 128165 ## 97 N12957 220 496.2727 109180 ## 98 N12967 230 498.3043 114610 ## 99 N12996 261 488.7663 127568 ## 100 N13110 91 1615.7363 147032 ## 101 N13113 72 1365.8472 98341 ## 102 N13118 126 688.8095 86790 ## 103 N13123 121 692.0826 83742 ## 104 N13124 149 682.4832 101690 ## 105 N13132 152 644.2632 97928 ## 106 N13133 137 694.8613 95196 ## 107 N13138 91 1530.3077 139258 ## 108 N13161 124 749.7500 92969 ## 109 N131EV 55 729.8909 40144 ## 110 N13202 128 719.0078 92033 ## 111 N13248 118 1505.6017 177661 ## 112 N132EV 35 655.2000 22932 ## 113 N133EV 38 668.2632 25394 ## 114 N134EV 38 690.2368 26229 ## 115 N13538 262 506.4389 132687 ## 116 N13550 247 531.1296 131189 ## 117 N13553 273 509.4689 139085 ## 118 N13566 240 505.0292 121207 ## 119 N135EV 42 624.2857 26220 ## 120 N136DL 1 762.0000 762 ## 121 N136EV 37 686.4865 25400 ## 122 N13716 167 1320.5569 220533 ## 123 N13718 161 1183.2547 190504 ## 124 N13750 166 1226.9578 203675 ## 125 N137DL 1 762.0000 762 ## 126 N137EV 36 652.1111 23476 ## 127 N138EV 28 648.0357 18145 ## 128 N13903 239 511.5397 122258 ## 129 N13908 265 494.9547 131163 ## 130 N13913 269 490.6283 131979 ## 131 N13914 267 515.9551 137760 ## 132 N13949 291 509.3196 148212 ## 133 N13955 258 502.9302 129756 ## 134 N13956 260 512.9577 133369 ## 135 N13958 259 487.3745 126230 ## 136 N13964 216 525.2824 113461 ## 137 N13965 255 513.9686 131062 ## 138 N13968 264 506.2121 133640 ## 139 N13969 222 485.8063 107849 ## 140 N13970 231 542.8831 125406 ## 141 N13975 253 489.6087 123871 ## 142 N13978 257 534.1245 137270 ## 143 N13979 264 517.3864 136590 ## 144 N13988 217 510.5806 110796 ## 145 N13989 245 516.7592 126606 ## 146 N13992 261 504.8238 131759 ## 147 N13994 271 517.4244 140222 ## 148 N13995 203 501.0936 101722 ## 149 N13997 242 529.1198 128047 ## 150 N14102 93 1542.3978 143443 ## 151 N14105 163 738.5460 120383 ## 152 N14106 82 1560.9024 127994 ## 153 N14107 74 1662.3243 123012 ## 154 N14115 74 1663.4595 123096 ## 155 N14116 124 676.7823 83921 ## 156 N14117 130 760.7615 98899 ## 157 N14118 110 1667.0182 183372 ## 158 N14120 74 1563.6351 115709 ## 159 N14121 87 1642.0115 142855 ## 160 N14125 120 742.3083 89077 ## 161 N14143 143 715.9790 102385 ## 162 N14148 133 683.9248 90962 ## 163 N14153 141 712.6312 100481 ## 164 N14158 128 707.8203 90601 ## 165 N14162 123 736.6667 90610 ## 166 N14168 147 674.5714 99162 ## 167 N14171 116 718.0172 83290 ## 168 N14173 117 736.5726 86179 ## 169 N14174 173 765.0173 132348 ## 170 N14177 142 719.4437 102161 ## 171 N14179 158 713.1709 112681 ## 172 N14180 169 746.7692 126204 ## 173 N14186 117 623.3333 72930 ## 174 N14188 116 769.8190 89299 ## 175 N14198 128 727.0312 93060 ## 176 N14203 103 736.9806 75909 ## 177 N14204 138 751.8696 103758 ## 178 N14214 129 1313.6822 169465 ## 179 N14219 121 1433.2562 173424 ## 180 N14228 111 1546.9640 171713 ## 181 N14230 123 1397.8862 171940 ## 182 N14231 114 1499.9123 170990 ## 183 N14237 106 1350.3302 143135 ## 184 N14242 126 1383.9841 174382 ## 185 N14250 111 1509.8829 167597 ## 186 N143DA 1 760.0000 760 ## 187 N14542 262 518.8435 135937 ## 188 N14543 247 523.5385 129314 ## 189 N14558 283 512.4240 145016 ## 190 N14562 246 507.2520 124784 ## 191 N14568 266 508.8835 135363 ## 192 N14570 252 503.0159 126760 ## 193 N14573 295 508.1627 149908 ## 194 N14628 1 1416.0000 1416 ## 195 N14629 4 1416.0000 5664 ## 196 N146PQ 44 649.2273 28566 ## 197 N14704 174 1218.0402 211939 ## 198 N14731 148 1305.8986 193273 ## 199 N147PQ 15 610.6000 9159 ## 200 N14902 229 502.6812 115114 ## 201 N14904 266 535.3534 142404 ## 202 N14905 209 504.1053 105358 ## 203 N14907 250 525.6120 131403 ## 204 N14916 261 502.4828 131148 ## 205 N14920 250 486.7360 121684 ## 206 N14923 216 474.1806 102423 ## 207 N14950 219 549.3425 120306 ## 208 N14952 275 524.6909 144290 ## 209 N14953 256 523.0312 133896 ## 210 N14959 252 518.3373 130621 ## 211 N14960 204 532.2353 108576 ## 212 N14972 204 529.2794 107973 ## 213 N14974 221 487.6018 107760 ## 214 N14977 252 529.2659 133375 ## 215 N14991 250 532.3720 133093 ## 216 N14993 259 512.6757 132783 ## 217 N14998 230 514.9435 118437 ## 218 N149AT 22 762.0000 16764 ## 219 N1501P 6 1617.5000 9705 ## 220 N150UW 67 537.5522 36016 ## 221 N151UW 54 538.2222 29064 ## 222 N152DL 2 760.0000 1520 ## 223 N152UW 51 539.5294 27516 ## 224 N153DL 4 1617.5000 6470 ## 225 N153PQ 31 647.5484 20074 ## 226 N153UW 60 565.4167 33925 ## 227 N154DL 50 2429.9400 121497 ## 228 N154UW 51 539.0000 27489 ## 229 N15555 234 497.7479 116473 ## 230 N15572 308 514.5162 158471 ## 231 N15574 219 539.3333 118114 ## 232 N155DL 9 1542.6667 13884 ## 233 N155UW 40 535.6750 21427 ## 234 N156DL 16 2150.1250 34402 ## 235 N156UW 39 536.7692 20934 ## 236 N15710 185 1240.7081 229531 ## 237 N15712 151 1260.8013 190381 ## 238 N157UW 40 538.4500 21538 ## 239 N15910 280 502.7393 140767 ## 240 N15912 242 526.8182 127490 ## 241 N15973 240 497.2208 119333 ## 242 N15980 316 503.2816 159037 ## 243 N15983 253 505.6008 127917 ## 244 N15985 231 520.7489 120293 ## 245 N15986 231 506.5498 117013 ## 246 N1602 12 1327.6667 15932 ## 247 N1603 16 1603.3750 25654 ## 248 N1604R 18 1477.6111 26597 ## 249 N1605 20 1427.4500 28549 ## 250 N16065 14 1487.4286 20824 ## 251 N1607B 3 760.0000 2280 ## 252 N1608 3 760.0000 2280 ## 253 N1609 4 760.0000 3040 ## 254 N1610D 2 760.0000 1520 ## 255 N16112 90 757.5444 68179 ## 256 N1611B 2 760.0000 1520 ## 257 N1612T 9 760.0000 6840 ## 258 N1613B 7 760.0000 5320 ## 259 N16147 112 644.9196 72231 ## 260 N16149 158 732.4873 115733 ## 261 N16151 134 728.4478 97612 ## 262 N16170 159 686.9748 109229 ## 263 N16178 108 677.6111 73182 ## 264 N16183 127 743.0866 94372 ## 265 N161PQ 3 760.0000 2280 ## 266 N161UW 82 537.8537 44104 ## 267 N16217 99 1529.5455 151425 ## 268 N16234 110 1309.6818 144065 ## 269 N162PQ 2 624.0000 1248 ## 270 N162UW 74 559.6216 41412 ## 271 N163US 83 538.5783 44702 ## 272 N16541 247 531.5709 131298 ## 273 N16546 238 508.1345 120936 ## 274 N16559 226 524.5088 118539 ## 275 N16561 232 530.9224 123174 ## 276 N16571 267 533.2622 142381 ## 277 N165US 78 536.9231 41880 ## 278 N16632 11 1402.9091 15432 ## 279 N166PQ 41 660.9512 27099 ## 280 N16701 156 1274.0769 198756 ## 281 N16703 170 1205.8059 204987 ## 282 N16709 167 1294.5329 216187 ## 283 N16713 168 1282.0893 215391 ## 284 N16732 150 1249.4600 187419 ## 285 N167US 90 539.0333 48513 ## 286 N168AT 18 762.0000 13716 ## 287 N16911 262 527.2366 138136 ## 288 N16918 257 513.9922 132096 ## 289 N16919 251 510.4861 128132 ## 290 N16951 196 511.8878 100330 ## 291 N16954 207 502.8696 104094 ## 292 N16961 239 537.3682 128431 ## 293 N16963 233 514.8584 119962 ## 294 N16976 232 518.0129 120179 ## 295 N16981 274 505.2409 138436 ## 296 N16987 222 512.6847 113816 ## 297 N16999 199 498.8744 99276 ## 298 N169AT 11 762.0000 8382 ## 299 N169DZ 14 1721.0714 24095 ## 300 N169UW 72 559.7222 40300 ## 301 N170PQ 7 754.0000 5278 ## 302 N170US 73 538.6164 39319 ## 303 N17104 88 1403.4659 123505 ## 304 N17105 83 1522.0723 126332 ## 305 N17108 145 745.9379 108161 ## 306 N17115 128 723.9766 92669 ## 307 N17122 97 1512.5361 146716 ## 308 N17126 95 1650.2211 156771 ## 309 N17128 89 1698.5056 151167 ## 310 N17133 88 1476.5114 129933 ## 311 N17138 137 776.3942 106366 ## 312 N17139 91 1547.8901 140858 ## 313 N17146 119 680.7983 81015 ## 314 N17159 130 772.3692 100408 ## 315 N17169 138 715.8696 98790 ## 316 N17185 147 742.7823 109189 ## 317 N17196 149 698.4899 104075 ## 318 N171DN 11 983.8182 10822 ## 319 N171DZ 17 1740.7647 29593 ## 320 N171US 81 536.3704 43446 ## 321 N17229 142 1433.9437 203620 ## 322 N17233 111 1460.7658 162145 ## 323 N17244 109 1473.7523 160639 ## 324 N17245 123 1529.2276 188095 ## 325 N172DN 15 1664.4000 24966 ## 326 N172DZ 13 2042.5385 26553 ## 327 N172US 65 562.2000 36543 ## 328 N173AT 9 762.0000 6858 ## 329 N173DZ 21 1640.6667 34454 ## 330 N173US 82 538.5488 44161 ## 331 N174AT 8 762.0000 6096 ## 332 N174DN 19 1784.2632 33901 ## 333 N174DZ 15 1424.8000 21372 ## 334 N174US 85 538.0706 45736 ## 335 N17560 168 510.5238 85768 ## 336 N175AT 5 762.0000 3810 ## 337 N175DN 10 1395.3000 13953 ## 338 N175DZ 19 1564.2632 29721 ## 339 N17627 2 1416.0000 2832 ## 340 N176AT 10 762.0000 7620 ## 341 N176DN 12 1916.6667 23000 ## 342 N176DZ 18 1799.7778 32396 ## 343 N176PQ 28 627.5714 17572 ## 344 N176UW 84 537.6429 45162 ## 345 N17719 151 1308.7748 197625 ## 346 N17730 152 1112.0329 169029 ## 347 N177DN 10 1097.7000 10977 ## 348 N177DZ 8 990.7500 7926 ## 349 N177US 72 537.4167 38694 ## 350 N178DN 12 1613.0833 19357 ## 351 N178DZ 11 1671.3636 18385 ## 352 N178JB 320 498.5813 159546 ## 353 N178US 65 562.7538 36579 ## 354 N17984 240 534.7042 128329 ## 355 N179DN 6 1045.8333 6275 ## 356 N179JB 311 447.6238 139211 ## 357 N179UW 76 537.9605 40885 ## 358 N180DN 35 2026.0571 70912 ## 359 N180US 64 537.2031 34381 ## 360 N18101 106 663.5660 70338 ## 361 N18102 115 684.2870 78693 ## 362 N18112 86 1677.7791 144289 ## 363 N18114 128 709.4766 90813 ## 364 N18119 111 1619.6396 179780 ## 365 N18120 134 744.6716 99786 ## 366 N181DN 12 1071.5833 12859 ## 367 N181PQ 39 619.8718 24175 ## 368 N181UW 63 538.6667 33936 ## 369 N18220 106 1390.9245 147438 ## 370 N18223 110 1507.8364 165862 ## 371 N18243 101 1501.0396 151605 ## 372 N182DN 12 1876.8333 22522 ## 373 N182UW 55 537.2364 29548 ## 374 N183DN 23 1867.1739 42945 ## 375 N183JB 361 453.0471 163550 ## 376 N183UW 60 539.1000 32346 ## 377 N184AT 4 762.0000 3048 ## 378 N184DN 16 1815.6250 29050 ## 379 N184JB 347 484.5994 168156 ## 380 N184US 75 537.5200 40314 ## 381 N18556 207 523.2609 108315 ## 382 N18557 294 504.6327 148362 ## 383 N185DN 14 1709.7143 23936 ## 384 N185UW 68 563.4265 38313 ## 385 N186DN 27 1893.4444 51123 ## 386 N186PQ 29 593.3793 17208 ## 387 N186US 63 536.7143 33813 ## 388 N187DN 65 2423.1231 157503 ## 389 N187JB 337 495.2344 166894 ## 390 N187PQ 5 705.6000 3528 ## 391 N187US 74 537.2703 39758 ## 392 N188DN 73 2467.6301 180137 ## 393 N188US 95 555.0000 52725 ## 394 N189DN 55 2443.8182 134410 ## 395 N189UW 75 538.3200 40374 ## 396 N190DN 52 2462.6154 128056 ## 397 N190JB 362 481.7901 174408 ## 398 N190UW 72 537.8333 38724 ## 399 N19117 82 1602.6951 131421 ## 400 N19130 109 1512.5963 164873 ## 401 N19136 68 1590.4118 108148 ## 402 N19141 89 1677.3820 149287 ## 403 N191DN 63 2391.6508 150674 ## 404 N191UW 64 536.1250 34312 ## 405 N192DN 58 2428.7069 140865 ## 406 N192JB 319 499.0658 159202 ## 407 N192UW 85 538.1059 45739 ## 408 N193DN 57 2324.5614 132500 ## 409 N193JB 334 456.6737 152529 ## 410 N193UW 97 539.2680 52309 ## 411 N194DN 54 2447.3519 132157 ## 412 N194UW 76 538.6711 40939 ## 413 N19554 311 503.6945 156649 ## 414 N195DN 67 2287.4627 153260 ## 415 N195PQ 16 634.7500 10156 ## 416 N195UW 73 538.0822 39280 ## 417 N196DN 47 2473.8723 116272 ## 418 N196UW 66 539.2727 35592 ## 419 N197DN 58 2412.8276 139944 ## 420 N197JB 233 533.7124 124355 ## 421 N197PQ 33 665.6667 21967 ## 422 N197UW 85 537.1882 45661 ## 423 N198DN 53 2410.2830 127745 ## 424 N198JB 306 479.1438 146618 ## 425 N198UW 83 535.8675 44477 ## 426 N19966 212 496.6132 105282 ## 427 N199DN 54 2414.6111 130389 ## 428 N199UW 68 537.4706 36548 ## 429 N1EAMQ 210 664.7857 139605 ## 430 N200AA 34 1033.6471 35144 ## 431 N200PQ 35 700.7714 24527 ## 432 N200WN 28 992.1786 27781 ## 433 N201AA 54 1011.8148 54638 ## 434 N201FR 34 1620.0000 55080 ## 435 N201LV 32 921.1250 29476 ## 436 N202AA 36 1058.2222 38096 ## 437 N202FR 47 1620.0000 76140 ## 438 N202WN 23 950.4348 21860 ## 439 N203FR 41 1620.0000 66420 ## 440 N203JB 285 510.4351 145474 ## 441 N203WN 35 1041.2286 36443 ## 442 N204FR 48 1620.0000 77760 ## 443 N204WN 28 901.0714 25230 ## 444 N205FR 47 1620.0000 76140 ## 445 N205WN 21 845.0476 17746 ## 446 N206FR 33 1620.0000 53460 ## 447 N206JB 307 489.3746 150238 ## 448 N206UA 1 2454.0000 2454 ## 449 N206WN 21 1031.2857 21657 ## 450 N207FR 33 1620.0000 53460 ## 451 N207WN 26 1005.9615 26155 ## 452 N208FR 26 1620.0000 42120 ## 453 N208WN 20 921.0500 18421 ## 454 N20904 2 1400.0000 2800 ## 455 N209FR 34 1620.0000 55080 ## 456 N209WN 32 1049.3750 33580 ## 457 N210FR 40 1620.0000 64800 ## 458 N210WN 27 1089.2963 29411 ## 459 N21108 100 1504.9300 150493 ## 460 N21129 137 720.4599 98703 ## 461 N21130 126 764.0556 96271 ## 462 N21144 131 682.6870 89432 ## 463 N21154 156 725.1603 113125 ## 464 N21197 168 664.3036 111603 ## 465 N211FR 31 1620.0000 50220 ## 466 N211WN 33 1060.3333 34991 ## 467 N212WN 18 1115.8889 20086 ## 468 N213FR 47 1620.0000 76140 ## 469 N213WN 28 1005.8929 28165 ## 470 N214FR 42 1620.0000 68040 ## 471 N214WN 23 1031.7826 23731 ## 472 N21537 224 518.5089 116146 ## 473 N215WN 24 1151.3333 27632 ## 474 N216FR 42 1620.0000 68040 ## 475 N216JB 343 512.0466 175632 ## 476 N216WR 29 1034.6897 30006 ## 477 N21723 143 1323.5245 189264 ## 478 N217JC 34 1045.0294 35531 ## 479 N218FR 68 1620.0000 110160 ## 480 N218WN 26 1034.9231 26908 ## 481 N219WN 22 1084.8636 23867 ## 482 N220WN 24 893.7500 21450 ## 483 N221FR 4 1620.0000 6480 ## 484 N221WN 30 984.3667 29531 ## 485 N222WN 26 1042.0769 27094 ## 486 N223WN 28 1128.2857 31592 ## 487 N224WN 29 890.9655 25838 ## 488 N225WN 22 982.3636 21612 ## 489 N226WN 26 841.5385 21880 ## 490 N227WN 26 1185.6154 30826 ## 491 N228JB 388 480.0515 186260 ## 492 N228PQ 28 650.2143 18206 ## 493 N228UA 1 2454.0000 2454 ## 494 N228WN 27 888.3704 23986 ## 495 N22909 262 494.4809 129554 ## 496 N22971 230 494.1130 113646 ## 497 N229JB 364 466.6456 169859 ## 498 N229WN 27 942.3333 25443 ## 499 N230WN 21 960.0476 20161 ## 500 N23139 141 734.4823 103562 ## 501 N231JB 285 491.0667 139954 ## 502 N231WN 42 962.3095 40417 ## 503 N232PQ 42 743.1905 31214 ## 504 N232WN 34 1144.3529 38908 ## 505 N233LV 30 914.5000 27435 ## 506 N234WN 33 1018.9394 33625 ## 507 N235WN 26 934.2692 24291 ## 508 N236JB 308 505.5292 155703 ## 509 N236WN 36 1014.7222 36530 ## 510 N23707 168 1177.7440 197861 ## 511 N23708 163 1186.2025 193351 ## 512 N23721 149 1284.2685 191356 ## 513 N237WN 36 963.9722 34703 ## 514 N238JB 313 465.0543 145562 ## 515 N238WN 35 1013.6000 35476 ## 516 N239JB 271 477.6679 129448 ## 517 N239WN 27 1048.4074 28307 ## 518 N240AT 5 762.0000 3810 ## 519 N240WN 21 921.6190 19354 ## 520 N24103 134 702.6642 94157 ## 521 N24128 129 666.0465 85920 ## 522 N241WN 28 1078.7500 30205 ## 523 N24202 104 1348.7981 140275 ## 524 N24211 130 1330.2615 172934 ## 525 N24212 120 1392.0833 167050 ## 526 N24224 78 1486.9231 115980 ## 527 N242WN 36 1123.9167 40461 ## 528 N243WN 32 1158.5000 37072 ## 529 N244WN 36 1010.5000 36378 ## 530 N245AY 2 529.0000 1058 ## 531 N245WN 26 1023.4231 26609 ## 532 N24633 8 1414.0000 11312 ## 533 N246LV 35 1033.7143 36180 ## 534 N24702 172 1197.0465 205892 ## 535 N24706 178 1254.5618 223312 ## 536 N24715 163 1316.5215 214593 ## 537 N24729 168 1362.1786 228846 ## 538 N247JB 350 455.7971 159529 ## 539 N247WN 33 1039.3333 34298 ## 540 N248WN 42 987.3333 41468 ## 541 N249JB 355 466.8056 165716 ## 542 N249WN 29 966.6552 28033 ## 543 N250WN 30 1067.8333 32035 ## 544 N25134 109 713.3578 77756 ## 545 N251WN 33 885.0606 29207 ## 546 N252WN 27 1042.5556 28149 ## 547 N253WN 27 1085.1852 29300 ## 548 N254WN 30 1042.6667 31280 ## 549 N255WN 39 1095.4872 42724 ## 550 N256WN 21 1086.0000 22806 ## 551 N25705 166 1193.4337 198110 ## 552 N257WN 31 879.0000 27249 ## 553 N258JB 427 529.8806 226259 ## 554 N258WN 42 913.8810 38383 ## 555 N259WN 24 981.3750 23553 ## 556 N260WN 31 1036.6452 32136 ## 557 N26123 107 1528.5327 163553 ## 558 N26141 111 664.8378 73797 ## 559 N261AT 9 762.0000 6858 ## 560 N261AV 6 1620.0000 9720 ## 561 N261WN 35 1041.1143 36439 ## 562 N26208 122 1433.6230 174902 ## 563 N26210 89 1309.8989 116581 ## 564 N26215 101 1526.9505 154222 ## 565 N26226 115 1420.9565 163410 ## 566 N262WN 33 880.6061 29060 ## 567 N263AV 41 1620.0000 66420 ## 568 N263WN 32 1133.6875 36278 ## 569 N264LV 31 1052.4839 32627 ## 570 N26545 265 497.9925 131968 ## 571 N26549 260 519.9692 135192 ## 572 N265JB 292 466.9658 136354 ## 573 N265WN 25 967.1600 24179 ## 574 N266JB 343 483.8659 165966 ## 575 N266WN 26 871.8846 22669 ## 576 N267AT 21 762.0000 16002 ## 577 N267JB 335 495.8239 166101 ## 578 N267WN 27 1075.7037 29044 ## 579 N268WN 29 987.0690 28625 ## 580 N26906 1 1400.0000 1400 ## 581 N269WN 37 1050.8919 38883 ## 582 N270WN 28 990.1786 27725 ## 583 N27152 109 719.6422 78441 ## 584 N27190 123 698.0976 85866 ## 585 N271LV 26 909.2308 23640 ## 586 N27200 163 692.2209 112832 ## 587 N27205 114 1518.2105 173076 ## 588 N27213 107 1538.0561 164572 ## 589 N27239 112 1395.0446 156245 ## 590 N272AT 17 762.0000 12954 ## 591 N272PQ 39 623.6410 24322 ## 592 N272WN 25 970.2800 24257 ## 593 N273AT 13 762.0000 9906 ## 594 N273JB 269 502.0781 135059 ## 595 N273WN 26 1007.3846 26192 ## 596 N27421 84 1785.5476 149986 ## 597 N27477 45 1632.2000 73449 ## 598 N274JB 370 472.8405 174951 ## 599 N274WN 22 886.9545 19513 ## 600 N275WN 27 1031.6667 27855 ## 601 N276AT 6 762.0000 4572 ## 602 N276WN 35 982.3143 34381 ## 603 N27722 154 1229.7857 189387 ## 604 N27724 175 1261.1714 220705 ## 605 N27733 178 1176.8202 209474 ## 606 N277WN 31 982.4516 30456 ## 607 N278AT 7 762.0000 5334 ## 608 N278WN 29 1019.5862 29568 ## 609 N27901 1 1400.0000 1400 ## 610 N27962 274 516.0693 141403 ## 611 N279AT 8 762.0000 6096 ## 612 N279JB 287 519.5157 149101 ## 613 N279PQ 42 598.9286 25155 ## 614 N279WN 27 1115.7778 30126 ## 615 N280WN 36 986.7222 35522 ## 616 N281AT 18 762.0000 13716 ## 617 N281JB 319 466.5078 148816 ## 618 N281WN 33 1084.8788 35801 ## 619 N282WN 29 946.5517 27450 ## 620 N283AT 14 762.0000 10668 ## 621 N283JB 344 502.6279 172904 ## 622 N283WN 28 1024.3929 28683 ## 623 N28457 109 1641.5872 178933 ## 624 N28478 53 1759.3208 93244 ## 625 N284AT 9 762.0000 6858 ## 626 N284JB 273 544.2784 148588 ## 627 N284WN 36 886.5000 31914 ## 628 N285AT 14 735.9286 10303 ## 629 N285WN 35 1025.7143 35900 ## 630 N286WN 38 1012.7895 38486 ## 631 N287AT 2 762.0000 1524 ## 632 N287WN 27 1068.9259 28861 ## 633 N288WN 37 956.3243 35384 ## 634 N289AT 6 762.0000 4572 ## 635 N289CT 26 1043.6538 27135 ## 636 N290AT 16 762.0000 12192 ## 637 N290WN 40 1083.7750 43351 ## 638 N29124 92 1648.0543 151621 ## 639 N29129 99 1519.7475 150455 ## 640 N291AT 4 762.0000 3048 ## 641 N291WN 32 894.3125 28618 ## 642 N292JB 322 462.9534 149071 ## 643 N292PQ 62 673.3871 41750 ## 644 N292WN 26 934.6538 24301 ## 645 N293PQ 67 686.0896 45968 ## 646 N293WN 21 898.8571 18876 ## 647 N294JB 305 486.3574 148339 ## 648 N294PQ 37 583.7297 21598 ## 649 N294WN 33 1100.8788 36329 ## 650 N295AT 4 762.0000 3048 ## 651 N295PQ 48 701.4792 33671 ## 652 N295WN 25 1058.2400 26456 ## 653 N296JB 357 515.1289 183901 ## 654 N296PQ 45 621.2000 27954 ## 655 N296WN 32 942.1562 30149 ## 656 N29717 133 1235.6992 164348 ## 657 N297PQ 22 572.5000 12595 ## 658 N297WN 32 969.2500 31016 ## 659 N298JB 407 473.7518 192817 ## 660 N298PQ 27 654.6296 17675 ## 661 N298WN 24 1019.3750 24465 ## 662 N29906 212 518.1132 109840 ## 663 N29917 263 512.5703 134806 ## 664 N299AT 6 701.1667 4207 ## 665 N299PQ 22 519.1818 11422 ## 666 N299WN 30 1039.2000 31176 ## 667 N301DQ 147 843.6327 124014 ## 668 N301NB 220 908.3636 199840 ## 669 N302AS 1 2402.0000 2402 ## 670 N302DQ 145 822.4897 119261 ## 671 N302NB 234 923.7778 216164 ## 672 N303AS 1 2402.0000 2402 ## 673 N303DQ 130 840.9000 109317 ## 674 N30401 92 1355.2935 124687 ## 675 N304DQ 136 838.5882 114048 ## 676 N304JB 335 496.2687 166250 ## 677 N305AS 2 2402.0000 4804 ## 678 N305DQ 139 808.6475 112402 ## 679 N306AS 1 2402.0000 2402 ## 680 N306DQ 131 812.0458 106378 ## 681 N306JB 283 480.1767 135890 ## 682 N307AS 2 2402.0000 4804 ## 683 N307DQ 124 838.4113 103963 ## 684 N307JB 261 512.0498 133645 ## 685 N308AT 15 762.0000 11430 ## 686 N308DE 129 817.0853 105404 ## 687 N309AS 2 2402.0000 4804 ## 688 N309AT 14 762.0000 10668 ## 689 N309DE 132 822.5455 108576 ## 690 N309JB 301 500.3488 150605 ## 691 N309US 137 906.0146 124124 ## 692 N310DE 143 842.9860 120547 ## 693 N310NW 111 968.1532 107465 ## 694 N31131 109 669.6055 72987 ## 695 N311US 59 878.8136 51850 ## 696 N312US 111 890.2793 98821 ## 697 N313US 106 923.2547 97865 ## 698 N31412 75 1256.2800 94221 ## 699 N314NB 217 804.7051 174621 ## 700 N314US 83 960.0241 79682 ## 701 N315AS 1 2402.0000 2402 ## 702 N315AT 3 762.0000 2286 ## 703 N315NB 210 830.9571 174501 ## 704 N315US 93 883.3226 82149 ## 705 N316AT 14 762.0000 10668 ## 706 N316JB 252 470.0397 118450 ## 707 N316NB 197 928.3706 182889 ## 708 N316US 83 859.4217 71332 ## 709 N317JB 332 493.2470 163758 ## 710 N317NB 190 890.1684 169132 ## 711 N317US 81 926.1852 75021 ## 712 N317WN 2 872.0000 1744 ## 713 N318AS 1 2402.0000 2402 ## 714 N318AT 6 762.0000 4572 ## 715 N318JB 296 488.9054 144716 ## 716 N318NB 202 814.3465 164498 ## 717 N318US 88 949.7273 83576 ## 718 N319AA 354 2374.3220 840510 ## 719 N319AS 3 2402.0000 7206 ## 720 N319NB 218 850.7294 185459 ## 721 N319US 121 931.0909 112662 ## 722 N320AA 307 2419.5831 742812 ## 723 N320AS 2 2402.0000 4804 ## 724 N320NB 272 899.3015 244610 ## 725 N320US 105 954.0000 100170 ## 726 N321NB 227 891.5639 202385 ## 727 N321US 107 870.2991 93122 ## 728 N322AA 15 2475.0000 37125 ## 729 N322NB 209 909.9187 190173 ## 730 N322US 111 956.0721 106124 ## 731 N323AA 357 2365.6275 844529 ## 732 N323AS 2 2402.0000 4804 ## 733 N323JB 325 460.4154 149635 ## 734 N323NB 215 878.8698 188957 ## 735 N323US 102 865.8235 88314 ## 736 N32404 99 1388.4949 137461 ## 737 N324AA 328 2423.4604 794895 ## 738 N324JB 370 510.1595 188759 ## 739 N324NB 202 826.1683 166886 ## 740 N324US 136 916.8676 124694 ## 741 N325AA 7 2538.4286 17769 ## 742 N325NB 177 900.8305 159447 ## 743 N325US 123 914.1057 112435 ## 744 N32626 1 1416.0000 1416 ## 745 N326AT 18 762.0000 13716 ## 746 N326NB 235 762.9617 179296 ## 747 N326US 106 937.8962 99417 ## 748 N327AA 387 2366.0594 915665 ## 749 N327NB 219 928.3653 203312 ## 750 N327NW 111 909.2523 100927 ## 751 N328AA 393 2389.5700 939101 ## 752 N328AT 3 762.0000 2286 ## 753 N328JB 309 428.5146 132411 ## 754 N328NB 48 746.7917 35846 ## 755 N328NW 104 906.8846 94316 ## 756 N329AA 344 2415.0465 830776 ## 757 N329AT 21 762.0000 16002 ## 758 N329JB 279 490.9642 136979 ## 759 N329NB 245 868.3510 212746 ## 760 N329NW 124 921.1452 114222 ## 761 N330AT 18 762.0000 13716 ## 762 N330NB 44 813.2045 35781 ## 763 N330NW 116 940.0431 109045 ## 764 N33103 103 1684.0388 173456 ## 765 N33132 87 1410.1149 122680 ## 766 N33182 170 724.1412 123104 ## 767 N331NB 59 791.4576 46696 ## 768 N331NW 130 908.1538 118060 ## 769 N33203 97 1547.6804 150125 ## 770 N33209 103 1514.5728 156001 ## 771 N33262 126 1303.0952 164190 ## 772 N33264 111 1406.0180 156068 ## 773 N33266 123 1406.3577 172982 ## 774 N33284 115 1413.0174 162497 ## 775 N33286 119 1369.6555 162989 ## 776 N33289 119 1420.7395 169068 ## 777 N33292 123 1512.0325 185980 ## 778 N33294 101 1488.1485 150303 ## 779 N332AA 328 2386.7500 782854 ## 780 N332NB 238 876.0084 208490 ## 781 N332NW 105 902.6857 94782 ## 782 N333NB 120 882.5583 105907 ## 783 N333NW 108 892.8611 96429 ## 784 N334JB 324 527.6019 170943 ## 785 N334NB 183 879.6612 160978 ## 786 N334NW 103 983.3883 101289 ## 787 N335AA 385 2362.8468 909696 ## 788 N335NB 193 910.9793 175819 ## 789 N335NW 99 978.7576 96897 ## 790 N336AA 353 2374.1813 838086 ## 791 N336AT 16 762.0000 12192 ## 792 N336NB 255 849.9725 216743 ## 793 N336NW 121 972.1488 117630 ## 794 N33714 177 1289.2486 228197 ## 795 N337AT 13 762.0000 9906 ## 796 N337JB 301 503.0831 151428 ## 797 N337NB 165 878.7152 144988 ## 798 N337NW 100 989.7600 98976 ## 799 N338AA 388 2399.9562 931183 ## 800 N338AT 16 762.0000 12192 ## 801 N338NB 211 836.0758 176412 ## 802 N338NW 114 952.2544 108557 ## 803 N339AA 326 2411.4202 786123 ## 804 N339JB 333 460.2943 153278 ## 805 N339NB 194 959.7990 186201 ## 806 N339NW 100 979.1300 97913 ## 807 N340LV 2 1238.5000 2477 ## 808 N340NB 202 833.9208 168452 ## 809 N340NW 74 942.4865 69744 ## 810 N34110 138 703.0725 97024 ## 811 N34111 174 715.5460 124505 ## 812 N34131 109 1654.0275 180289 ## 813 N34137 86 1551.1744 133401 ## 814 N341NB 139 808.9640 112446 ## 815 N341NW 113 1051.7434 118847 ## 816 N34222 101 1431.6733 144599 ## 817 N34282 102 1468.2745 149764 ## 818 N342AA 19 2235.5263 42475 ## 819 N342NB 190 851.7579 161834 ## 820 N342NW 111 993.5586 110285 ## 821 N343AA 13 2240.5385 29127 ## 822 N343NB 119 857.0000 101983 ## 823 N343NW 108 975.2500 105327 ## 824 N34455 106 1614.8491 171174 ## 825 N34460 90 1632.5111 146926 ## 826 N344AA 13 1595.3846 20740 ## 827 N344AT 32 762.0000 24384 ## 828 N344NB 179 897.3017 160617 ## 829 N344NW 94 999.6170 93964 ## 830 N344SW 1 872.0000 872 ## 831 N345AA 21 2009.0476 42190 ## 832 N345NB 180 850.6722 153121 ## 833 N345NW 62 1010.9194 62677 ## 834 N345SA 3 769.3333 2308 ## 835 N346AA 17 2137.4706 36337 ## 836 N346JB 314 482.4363 151485 ## 837 N346NB 199 828.0452 164781 ## 838 N346SW 3 1057.0000 3171 ## 839 N347AA 27 1761.8148 47569 ## 840 N347NB 168 829.5179 139359 ## 841 N347NW 73 1039.7671 75903 ## 842 N347SW 1 872.0000 872 ## 843 N348AA 26 2292.7308 59611 ## 844 N348JB 348 485.1782 168842 ## 845 N348NB 157 831.6497 130569 ## 846 N348NW 91 930.8462 84707 ## 847 N349AA 19 2297.6316 43655 ## 848 N349NB 168 828.8214 139242 ## 849 N349NW 92 952.7826 87656 ## 850 N349SW 3 763.6667 2291 ## 851 N350AA 13 1664.7692 21642 ## 852 N350NA 91 928.3846 84483 ## 853 N350SW 1 738.0000 738 ## 854 N351AA 23 2091.1739 48097 ## 855 N351JB 402 474.2711 190657 ## 856 N351NB 78 813.4359 63448 ## 857 N351NW 114 999.4825 113941 ## 858 N35204 119 1554.5462 184991 ## 859 N35260 136 1383.6176 188172 ## 860 N35271 125 1367.7440 170968 ## 861 N352AA 21 2300.8571 48318 ## 862 N352NB 42 672.5952 28249 ## 863 N352NW 84 950.9643 79881 ## 864 N352SW 4 1006.7500 4027 ## 865 N353AA 16 2024.6250 32394 ## 866 N353AT 21 762.0000 16002 ## 867 N353JB 404 510.1238 206090 ## 868 N353NB 179 799.1117 143041 ## 869 N353NW 105 879.2857 92325 ## 870 N353SW 6 980.0000 5880 ## 871 N35407 101 1409.0000 142309 ## 872 N354AA 25 1927.3200 48183 ## 873 N354AT 10 762.0000 7620 ## 874 N354JB 333 446.3063 148620 ## 875 N354NB 26 816.8077 21237 ## 876 N354NW 99 929.2828 91999 ## 877 N354SW 4 966.5000 3866 ## 878 N355AA 10 1987.2000 19872 ## 879 N355JB 282 439.5709 123959 ## 880 N355NB 128 835.2656 106914 ## 881 N355NW 103 1007.5049 103773 ## 882 N355SW 2 818.0000 1636 ## 883 N356AA 21 1795.1905 37699 ## 884 N356NW 110 985.7000 108427 ## 885 N356SW 5 947.6000 4738 ## 886 N357AA 28 2036.1786 57013 ## 887 N357NB 147 830.0544 122018 ## 888 N357NW 116 950.6379 110274 ## 889 N357SW 8 946.1250 7569 ## 890 N358AA 11 1905.5455 20961 ## 891 N358JB 271 453.5941 122924 ## 892 N358NB 187 826.9198 154634 ## 893 N358NW 108 955.3704 103180 ## 894 N358SW 2 805.0000 1610 ## 895 N359AA 19 1903.6842 36170 ## 896 N359NB 185 801.6865 148312 ## 897 N359NW 80 1019.6875 81575 ## 898 N359SW 4 660.0000 2640 ## 899 N360AA 21 2080.3333 43687 ## 900 N360NB 151 896.5298 135376 ## 901 N360NW 111 1020.6667 113294 ## 902 N360SW 4 970.0000 3880 ## 903 N361AA 23 2124.0870 48854 ## 904 N361NB 157 864.7707 135769 ## 905 N361NW 105 1006.9429 105729 ## 906 N361SW 3 998.0000 2994 ## 907 N361VA 47 2473.4255 116251 ## 908 N36207 115 1514.8348 174206 ## 909 N36247 108 1566.5648 169189 ## 910 N36272 121 1244.9587 150640 ## 911 N36280 113 1450.0885 163860 ## 912 N362AA 16 2024.6250 32394 ## 913 N362NB 75 757.4400 56808 ## 914 N362NW 106 1051.0472 111411 ## 915 N362SW 7 1079.5714 7557 ## 916 N363AA 17 2128.9412 36192 ## 917 N363NB 86 832.7674 71618 ## 918 N363NW 113 989.0708 111765 ## 919 N363SW 5 807.6000 4038 ## 920 N36444 103 1627.4563 167628 ## 921 N36447 113 1743.3009 196993 ## 922 N36469 102 1808.1765 184434 ## 923 N36472 90 1682.3667 151413 ## 924 N36476 54 1635.2963 88306 ## 925 N364AA 22 2220.3182 48847 ## 926 N364NB 199 882.2563 175569 ## 927 N364NW 115 985.0609 113282 ## 928 N364SW 6 818.3333 4910 ## 929 N365AA 32 1743.9375 55806 ## 930 N365NB 159 867.9308 138001 ## 931 N365NW 97 987.8351 95820 ## 932 N365SW 5 953.0000 4765 ## 933 N366AA 12 1837.5000 22050 ## 934 N366NB 156 828.4103 129232 ## 935 N366NW 103 941.5631 96981 ## 936 N366SW 6 1024.8333 6149 ## 937 N367AA 12 1950.5833 23407 ## 938 N367NW 121 1035.1157 125249 ## 939 N367SW 2 810.0000 1620 ## 940 N368AA 11 1769.4545 19464 ## 941 N368JB 230 433.0826 99609 ## 942 N368NB 171 824.5205 140993 ## 943 N368NW 84 960.3214 80667 ## 944 N368SW 5 853.8000 4269 ## 945 N36915 228 521.2544 118846 ## 946 N369AA 15 2149.4667 32242 ## 947 N369NB 187 879.9893 164558 ## 948 N369NW 91 980.4505 89221 ## 949 N369SW 5 766.6000 3833 ## 950 N370AA 19 2113.2632 40152 ## 951 N370NB 151 877.9603 132572 ## 952 N370NW 123 956.4878 117648 ## 953 N370SW 6 892.1667 5353 ## 954 N371AA 24 2063.6667 49528 ## 955 N371CA 196 551.3418 108063 ## 956 N371DA 122 1500.4918 183060 ## 957 N371NB 149 831.1074 123835 ## 958 N371NW 78 975.4487 76085 ## 959 N371SW 5 928.2000 4641 ## 960 N37252 123 1515.7886 186442 ## 961 N37253 97 1524.5567 147882 ## 962 N37255 107 1346.4953 144075 ## 963 N37263 130 1292.9231 168080 ## 964 N37267 121 1406.2975 170162 ## 965 N37273 107 1367.4393 146316 ## 966 N37274 121 1340.2975 162176 ## 967 N37277 56 1134.3214 63522 ## 968 N37281 102 1492.0784 152192 ## 969 N37287 124 1574.5565 195245 ## 970 N37290 103 1486.6990 153130 ## 971 N37293 102 1423.3333 145180 ## 972 N37298 146 1427.0205 208345 ## 973 N372AA 10 1687.8000 16878 ## 974 N372DA 85 1569.2118 133383 ## 975 N372NW 114 984.7544 112262 ## 976 N372SW 3 1208.6667 3626 ## 977 N3730B 121 1514.1488 183212 ## 978 N3731T 115 1704.4609 196013 ## 979 N3732J 108 1559.6667 168444 ## 980 N3733Z 102 1519.0784 154946 ## 981 N3734B 112 1677.6964 187902 ## 982 N3735D 136 1581.8750 215135 ## 983 N3736C 121 1682.9421 203636 ## 984 N3737C 113 1557.3717 175983 ## 985 N3738B 80 1637.9125 131033 ## 986 N3739P 104 1596.2788 166013 ## 987 N373AA 15 2358.4000 35376 ## 988 N373DA 106 1695.6038 179734 ## 989 N373JB 232 367.1207 85172 ## 990 N373NW 110 958.0364 105384 ## 991 N373SW 8 892.8750 7143 ## 992 N37408 90 1485.1222 133661 ## 993 N37409 86 1323.8837 113854 ## 994 N3740C 123 1528.8293 188046 ## 995 N37413 102 1561.3627 159259 ## 996 N37419 95 1556.6526 147882 ## 997 N3741S 109 1634.4404 178154 ## 998 N37420 108 1688.4537 182353 ## 999 N37422 98 1672.0102 163857 ## 1000 N37427 89 1796.0337 159847 ## 1001 N3742C 98 1658.2755 162511 ## 1002 N37434 121 1542.6612 186662 ## 1003 N37437 101 1604.5545 162060 ## 1004 N3743H 142 1661.8592 235984 ## 1005 N3744F 140 1696.8071 237553 ## 1006 N37456 89 1634.2022 145444 ## 1007 N3745B 162 1795.4012 290855 ## 1008 N37462 97 1665.4124 161545 ## 1009 N37464 88 1590.9886 140007 ## 1010 N37465 111 1716.2613 190505 ## 1011 N37466 99 1628.2020 161192 ## 1012 N37468 102 1509.8333 154003 ## 1013 N3746H 124 1889.4032 234286 ## 1014 N37470 79 1706.2785 134796 ## 1015 N37471 100 1824.0000 182400 ## 1016 N37474 73 1566.3699 114345 ## 1017 N3747D 142 1739.9648 247075 ## 1018 N3748Y 124 1754.5887 217569 ## 1019 N3749D 157 1754.6115 275474 ## 1020 N374AA 15 1887.4000 28311 ## 1021 N374DA 102 1604.0000 163608 ## 1022 N374JB 236 414.5000 97822 ## 1023 N374NW 115 935.5304 107586 ## 1024 N374SW 6 914.3333 5486 ## 1025 N3750D 142 1856.0141 263554 ## 1026 N3751B 134 1804.6418 241822 ## 1027 N3752 147 1847.1497 271531 ## 1028 N3753 130 1791.0538 232837 ## 1029 N3754A 158 1774.0949 280307 ## 1030 N3755D 107 1741.2523 186314 ## 1031 N3756 130 1890.9385 245822 ## 1032 N3757D 140 1816.1714 254264 ## 1033 N3758Y 166 1837.4217 305012 ## 1034 N3759 125 1773.2480 221656 ## 1035 N375AA 13 1653.6154 21497 ## 1036 N375DA 96 1650.5417 158452 ## 1037 N375JB 58 551.6379 31995 ## 1038 N375NC 85 991.5765 84284 ## 1039 N375SW 9 792.3333 7131 ## 1040 N3760C 127 1739.6772 220939 ## 1041 N3761R 131 1806.1603 236607 ## 1042 N3762Y 131 1815.9847 237894 ## 1043 N3763D 119 1729.6555 205829 ## 1044 N3764D 169 1777.2426 300354 ## 1045 N3765 132 1713.9545 226242 ## 1046 N3766 115 1765.8957 203078 ## 1047 N3767 146 1807.8630 263948 ## 1048 N3768 127 1880.3858 238809 ## 1049 N3769L 162 1857.1235 300854 ## 1050 N376AA 20 2063.1500 41263 ## 1051 N376DA 76 1677.5789 127496 ## 1052 N376NW 135 974.8148 131600 ## 1053 N376SW 5 883.2000 4416 ## 1054 N37700 159 1852.4528 294540 ## 1055 N3771K 116 1752.9138 203338 ## 1056 N3772H 157 1780.6688 279565 ## 1057 N3773D 146 1752.3562 255844 ## 1058 N377AA 25 2161.2400 54031 ## 1059 N377DA 99 1619.3535 160316 ## 1060 N377NW 112 884.9554 99115 ## 1061 N378AA 13 1779.9231 23139 ## 1062 N378DA 100 1609.4100 160941 ## 1063 N378NW 133 913.9850 121560 ## 1064 N378SW 7 939.2857 6575 ## 1065 N379AA 13 1884.3077 24496 ## 1066 N379DA 88 1559.1136 137202 ## 1067 N379SW 7 934.0000 6538 ## 1068 N380AA 19 2113.2632 40152 ## 1069 N380DA 109 1631.8257 177869 ## 1070 N380HA 40 4983.0000 199320 ## 1071 N380SW 3 1051.6667 3155 ## 1072 N381AA 22 2035.2727 44776 ## 1073 N381DN 102 1630.8529 166347 ## 1074 N381HA 25 4983.0000 124575 ## 1075 N38257 111 1487.0541 165063 ## 1076 N38268 117 1414.6838 165518 ## 1077 N382AA 17 2121.0000 36057 ## 1078 N382DA 115 1619.2261 186211 ## 1079 N382HA 26 4983.0000 129558 ## 1080 N382SW 9 836.3333 7527 ## 1081 N383AA 25 1921.7200 48043 ## 1082 N383DN 119 1480.7563 176210 ## 1083 N383HA 26 4983.0000 129558 ## 1084 N383SW 4 791.5000 3166 ## 1085 N38403 72 1374.0556 98932 ## 1086 N38417 70 1462.3714 102366 ## 1087 N38424 103 1679.7476 173014 ## 1088 N38443 107 1464.0561 156654 ## 1089 N38446 104 1601.9423 166602 ## 1090 N38451 97 1619.1443 157057 ## 1091 N38454 104 1773.6442 184459 ## 1092 N38458 92 1517.8261 139640 ## 1093 N38459 109 1619.4312 176518 ## 1094 N38467 89 1610.1236 143301 ## 1095 N38473 71 1848.1127 131216 ## 1096 N384AA 10 2136.9000 21369 ## 1097 N384DA 94 1608.0319 151155 ## 1098 N384HA 33 4983.0000 164439 ## 1099 N384SW 5 1055.4000 5277 ## 1100 N385AA 20 1987.2000 39744 ## 1101 N385DN 104 1648.4519 171439 ## 1102 N385HA 28 4983.0000 139524 ## 1103 N386AA 23 2065.3043 47502 ## 1104 N386DA 100 1592.3400 159234 ## 1105 N386HA 25 4983.0000 124575 ## 1106 N386SW 7 852.7143 5969 ## 1107 N38727 172 1272.5174 218873 ## 1108 N387AA 16 1819.6875 29115 ## 1109 N387DA 84 1489.5119 125119 ## 1110 N387SW 5 890.6000 4453 ## 1111 N388AA 18 1787.3889 32173 ## 1112 N388DA 104 1574.2115 163718 ## 1113 N388HA 36 4983.0000 179388 ## 1114 N388SW 7 834.0000 5838 ## 1115 N389AA 9 2225.4444 20029 ## 1116 N389DA 134 1516.5224 203214 ## 1117 N389HA 32 4983.0000 159456 ## 1118 N389SW 7 795.1429 5566 ## 1119 N390AA 14 1944.4286 27222 ## 1120 N390DA 102 1608.4412 164061 ## 1121 N390HA 20 4983.0000 99660 ## 1122 N390SW 11 835.2727 9188 ## 1123 N391AA 12 2211.7500 26541 ## 1124 N391CA 148 562.6149 83267 ## 1125 N391DA 101 1461.7129 147633 ## 1126 N391HA 21 4983.0000 104643 ## 1127 N391SW 4 936.5000 3746 ## 1128 N39297 106 1428.8396 151457 ## 1129 N392AA 14 2077.7143 29088 ## 1130 N392DA 112 1556.5089 174329 ## 1131 N392HA 13 4983.0000 64779 ## 1132 N392SW 5 953.0000 4765 ## 1133 N393AA 23 2189.3913 50356 ## 1134 N393DA 86 1587.0465 136486 ## 1135 N393HA 10 4983.0000 49830 ## 1136 N39415 101 1728.2673 174555 ## 1137 N39416 109 1723.6330 187876 ## 1138 N39418 105 1630.5714 171210 ## 1139 N39423 101 1710.4554 172756 ## 1140 N39450 91 1676.2198 152536 ## 1141 N39461 107 1611.6729 172449 ## 1142 N39463 107 1587.8972 169905 ## 1143 N39475 69 1628.8986 112394 ## 1144 N394AA 18 1996.0556 35929 ## 1145 N394DA 91 1697.1538 154441 ## 1146 N394DL 4 837.2500 3349 ## 1147 N394SW 6 863.5000 5181 ## 1148 N395AA 8 2211.7500 17694 ## 1149 N395DN 108 1499.2778 161922 ## 1150 N395HA 7 4983.0000 34881 ## 1151 N395SW 4 791.5000 3166 ## 1152 N396AA 21 1873.1429 39336 ## 1153 N396DA 95 1669.7474 158626 ## 1154 N396SW 7 980.0000 6860 ## 1155 N39726 167 1380.3533 230519 ## 1156 N39728 195 1307.3949 254942 ## 1157 N397AA 20 1762.6500 35253 ## 1158 N397DA 116 1665.5690 193206 ## 1159 N397SW 5 748.8000 3744 ## 1160 N398AA 19 2192.0526 41649 ## 1161 N398CA 174 561.1897 97647 ## 1162 N398DA 116 1693.2414 196416 ## 1163 N398SW 6 890.1667 5341 ## 1164 N399AA 25 1987.2000 49680 ## 1165 N399DA 120 1611.3167 193358 ## 1166 N399WN 3 818.3333 2455 ## 1167 N3AAAA 74 1061.8378 78576 ## 1168 N3ABAA 64 1094.3750 70040 ## 1169 N3ACAA 87 1188.1034 103365 ## 1170 N3ADAA 62 1108.9032 68752 ## 1171 N3AEAA 58 1254.8276 72780 ## 1172 N3AEMQ 276 655.8986 181028 ## 1173 N3AFAA 63 1085.3651 68378 ## 1174 N3AGAA 51 1245.3922 63515 ## 1175 N3AHAA 59 1266.1356 74702 ## 1176 N3AJAA 62 1151.3548 71384 ## 1177 N3AKAA 73 1242.6575 90714 ## 1178 N3ALAA 63 1078.1746 67925 ## 1179 N3AMAA 72 1130.5000 81396 ## 1180 N3ANAA 76 1123.2632 85368 ## 1181 N3APAA 63 1175.2063 74038 ## 1182 N3ARAA 71 1021.5915 72533 ## 1183 N3ASAA 62 1186.1613 73542 ## 1184 N3ATAA 62 1217.2903 75472 ## 1185 N3AUAA 67 1279.9104 85754 ## 1186 N3AVAA 62 1144.3387 70949 ## 1187 N3AWAA 61 1213.9836 74053 ## 1188 N3AXAA 63 1015.8095 63996 ## 1189 N3AYAA 68 1100.6324 74843 ## 1190 N3BAAA 77 1242.3117 95658 ## 1191 N3BBAA 61 1176.8689 71789 ## 1192 N3BCAA 83 1091.8916 90627 ## 1193 N3BDAA 85 1290.8824 109725 ## 1194 N3BEAA 48 1250.8125 60039 ## 1195 N3BFAA 64 1248.4219 79899 ## 1196 N3BGAA 68 1299.4412 88362 ## 1197 N3BHAA 88 1195.3068 105187 ## 1198 N3BJAA 55 1236.0909 67985 ## 1199 N3BKAA 76 1177.0000 89452 ## 1200 N3BLAA 66 1222.5000 80685 ## 1201 N3BMAA 23 1229.5217 28279 ## 1202 N3BNAA 43 1098.6977 47244 ## 1203 N3BPAA 78 1113.7821 86875 ## 1204 N3BRAA 84 1195.9167 100457 ## 1205 N3BSAA 54 1268.0185 68473 ## 1206 N3BTAA 46 1359.5435 62539 ## 1207 N3BUAA 72 1418.5278 102134 ## 1208 N3BVAA 100 1193.1200 119312 ## 1209 N3BWAA 80 1289.5750 103166 ## 1210 N3BXAA 68 1262.6029 85857 ## 1211 N3BYAA 81 1188.0494 96232 ## 1212 N3CAAA 70 1138.1143 79668 ## 1213 N3CBAA 62 1374.0323 85190 ## 1214 N3CCAA 82 1261.7683 103465 ## 1215 N3CDAA 69 1232.3043 85029 ## 1216 N3CEAA 74 1211.4054 89644 ## 1217 N3CFAA 103 1301.4272 134047 ## 1218 N3CGAA 79 1249.0380 98674 ## 1219 N3CHAA 78 1261.6538 98409 ## 1220 N3CJAA 56 1109.2857 62120 ## 1221 N3CKAA 66 1259.1212 83102 ## 1222 N3CLAA 68 1359.9706 92478 ## 1223 N3CMAA 62 1214.6129 75306 ## 1224 N3CNAA 68 1246.4559 84759 ## 1225 N3CPAA 70 1292.2857 90460 ## 1226 N3CRAA 73 1204.3288 87916 ## 1227 N3CSAA 68 1244.1618 84603 ## 1228 N3CTAA 60 1230.3167 73819 ## 1229 N3CUAA 48 998.2292 47915 ## 1230 N3CVAA 38 1009.7105 38369 ## 1231 N3CWAA 68 1157.6912 78723 ## 1232 N3CXAA 52 972.6731 50579 ## 1233 N3CYAA 71 1179.2394 83726 ## 1234 N3DAAA 43 1085.8140 46690 ## 1235 N3DBAA 70 1228.2857 85980 ## 1236 N3DCAA 51 1183.4510 60356 ## 1237 N3DDAA 66 1147.5606 75739 ## 1238 N3DEAA 65 1181.0308 76767 ## 1239 N3DFAA 45 1220.2222 54910 ## 1240 N3DGAA 60 1244.5333 74672 ## 1241 N3DHAA 35 985.5714 34495 ## 1242 N3DJAA 44 1358.6591 59781 ## 1243 N3DLAA 60 949.8167 56989 ## 1244 N3DMAA 76 1161.2368 88254 ## 1245 N3DNAA 47 1147.8085 53947 ## 1246 N3DPAA 63 1230.0000 77490 ## 1247 N3DRAA 99 1217.5354 120536 ## 1248 N3DSAA 91 1168.7912 106360 ## 1249 N3DTAA 67 1153.6567 77295 ## 1250 N3DUAA 70 1130.5429 79138 ## 1251 N3DVAA 71 1229.0423 87262 ## 1252 N3DWAA 71 1245.1690 88407 ## 1253 N3DXAA 70 1209.0286 84632 ## 1254 N3DYAA 62 1156.7742 71720 ## 1255 N3EAAA 57 1268.9649 72331 ## 1256 N3EBAA 79 1211.5696 95714 ## 1257 N3ECAA 57 1251.3684 71328 ## 1258 N3EDAA 55 1236.3455 67999 ## 1259 N3EEAA 88 1130.0114 99441 ## 1260 N3EFAA 58 1133.6897 65754 ## 1261 N3EGAA 56 1128.6607 63205 ## 1262 N3EHAA 74 1227.0946 90805 ## 1263 N3EJAA 72 1114.5833 80250 ## 1264 N3EKAA 45 1186.7778 53405 ## 1265 N3ELAA 63 1124.2063 70825 ## 1266 N3EMAA 69 1246.6087 86016 ## 1267 N3ENAA 65 1322.3692 85954 ## 1268 N3EPAA 58 1201.2586 69673 ## 1269 N3ERAA 66 1197.0606 79006 ## 1270 N3ESAA 69 1283.3478 88551 ## 1271 N3ETAA 60 1093.1833 65591 ## 1272 N3EUAA 56 1210.5714 67792 ## 1273 N3EVAA 88 1168.1932 102801 ## 1274 N3EWAA 72 1128.3056 81238 ## 1275 N3EXAA 65 1274.2308 82825 ## 1276 N3EYAA 105 1275.9905 133979 ## 1277 N3FAAA 79 1218.4810 96260 ## 1278 N3FBAA 74 1299.4730 96161 ## 1279 N3FCAA 54 1287.8333 69543 ## 1280 N3FDAA 77 1240.1818 95494 ## 1281 N3FEAA 66 1304.8939 86123 ## 1282 N3FFAA 68 1213.2059 82498 ## 1283 N3FGAA 53 1287.0000 68211 ## 1284 N3FHAA 82 1198.2927 98260 ## 1285 N3FJAA 98 1129.5306 110694 ## 1286 N3FKAA 80 1284.8750 102790 ## 1287 N3FLAA 67 1246.8209 83537 ## 1288 N3FMAA 75 1255.0533 94129 ## 1289 N3FNAA 63 1343.0159 84610 ## 1290 N3FPAA 59 1154.2712 68102 ## 1291 N3FRAA 65 1119.2154 72749 ## 1292 N3FSAA 77 1135.5974 87441 ## 1293 N3FTAA 87 1166.2184 101461 ## 1294 N3FUAA 97 1242.7010 120542 ## 1295 N3FVAA 50 1248.9200 62446 ## 1296 N3FWAA 84 1223.4286 102768 ## 1297 N3FXAA 86 1210.3372 104089 ## 1298 N3FYAA 86 1235.4070 106245 ## 1299 N3GAAA 83 1265.1566 105008 ## 1300 N3GBAA 60 1192.7500 71565 ## 1301 N3GCAA 101 1219.9109 123211 ## 1302 N3GDAA 74 1127.8649 83462 ## 1303 N3GEAA 80 1151.5625 92125 ## 1304 N3GFAA 96 1183.5104 113617 ## 1305 N3GGAA 72 1232.1667 88716 ## 1306 N3GHAA 74 1233.5000 91279 ## 1307 N3GJAA 65 1208.0462 78523 ## 1308 N3GKAA 77 1246.5974 95988 ## 1309 N3GLAA 93 1162.0215 108068 ## 1310 N3GMAA 69 1235.0290 85217 ## 1311 N3GNAA 59 1228.0339 72454 ## 1312 N3GPAA 63 1125.6667 70917 ## 1313 N3GRAA 79 1339.6709 105834 ## 1314 N3GSAA 85 1124.0941 95548 ## 1315 N3GTAA 60 1241.0500 74463 ## 1316 N3GUAA 77 1205.5455 92827 ## 1317 N3GVAA 73 1204.1233 87901 ## 1318 N3GWAA 70 1184.2429 82897 ## 1319 N3GXAA 81 1163.7407 94263 ## 1320 N3GYAA 60 1328.8167 79729 ## 1321 N3HAAA 69 1186.1014 81841 ## 1322 N3HBAA 79 1278.7848 101024 ## 1323 N3HCAA 81 1262.6543 102275 ## 1324 N3HDAA 68 1149.8824 78192 ## 1325 N3HEAA 80 1213.2750 97062 ## 1326 N3HFAA 62 1287.5806 79830 ## 1327 N3HGAA 81 1164.3210 94310 ## 1328 N3HHAA 52 1172.7885 60985 ## 1329 N3HJAA 78 1246.0897 97195 ## 1330 N3HKAA 56 1300.8929 72850 ## 1331 N3HLAA 60 1275.8167 76549 ## 1332 N3HMAA 79 1141.4430 90174 ## 1333 N3HNAA 74 1244.0811 92062 ## 1334 N3HPAA 48 1166.2083 55978 ## 1335 N3HRAA 81 1196.0864 96883 ## 1336 N3HSAA 69 1212.3478 83652 ## 1337 N3HTAA 58 1201.3621 69679 ## 1338 N3HUAA 51 1093.3333 55760 ## 1339 N3HVAA 55 1312.1636 72169 ## 1340 N3HWAA 82 1286.3049 105477 ## 1341 N3HXAA 70 1333.3429 93334 ## 1342 N3HYAA 68 1380.0882 93846 ## 1343 N3JAAA 60 1153.5333 69212 ## 1344 N3JBAA 56 1163.6250 65163 ## 1345 N3JCAA 69 1254.8261 86583 ## 1346 N3JDAA 80 1228.5500 98284 ## 1347 N3JEAA 48 1239.4375 59493 ## 1348 N3JFAA 68 1294.2206 88007 ## 1349 N3JGAA 57 1251.7368 71349 ## 1350 N3JHAA 74 1238.9865 91685 ## 1351 N3JJAA 87 1263.3563 109912 ## 1352 N3JKAA 53 1205.9057 63913 ## 1353 N3JLAA 78 1293.3846 100884 ## 1354 N3JMAA 57 1322.2982 75371 ## 1355 N3JNAA 64 1262.6562 80810 ## 1356 N3JPAA 102 1163.9020 118718 ## 1357 N3JRAA 71 1163.0000 82573 ## 1358 N3JSAA 72 1156.5278 83270 ## 1359 N3JTAA 78 1289.5769 100587 ## 1360 N3JUAA 72 1183.4583 85209 ## 1361 N3JVAA 72 1132.1806 81517 ## 1362 N3JWAA 73 1138.2192 83090 ## 1363 N3JXAA 58 1295.7069 75151 ## 1364 N3JYAA 56 1238.6964 69367 ## 1365 N3KAAA 63 1150.3810 72474 ## 1366 N3KBAA 59 1209.2712 71347 ## 1367 N3KCAA 67 1161.1940 77800 ## 1368 N3KDAA 64 1099.7188 70382 ## 1369 N3KEAA 67 1243.2239 83296 ## 1370 N3KFAA 57 1210.2632 68985 ## 1371 N3KGAA 52 1281.3654 66631 ## 1372 N3KHAA 58 1156.0862 67053 ## 1373 N3KJAA 71 1238.4507 87930 ## 1374 N3KKAA 58 1173.6552 68072 ## 1375 N3KLAA 45 1349.1111 60710 ## 1376 N3KMAA 60 1300.6500 78039 ## 1377 N3KNAA 40 1079.8000 43192 ## 1378 N3KPAA 48 1195.6875 57393 ## 1379 N3KRAA 40 1246.7750 49871 ## 1380 N3KSAA 35 1175.7714 41152 ## 1381 N3KTAA 41 1256.2683 51507 ## 1382 N3KUAA 15 980.5333 14708 ## 1383 N3KVAA 30 1099.9000 32997 ## 1384 N3KWAA 25 1391.6800 34792 ## 1385 N3KXAA 26 1193.8462 31040 ## 1386 N3KYAA 31 1250.0000 38750 ## 1387 N3LAAA 13 1176.0769 15289 ## 1388 N3LBAA 24 1314.8750 31557 ## 1389 N3LDAA 1 2422.0000 2422 ## 1390 N3LEAA 4 1169.2500 4677 ## 1391 N3LFAA 1 1096.0000 1096 ## 1392 N3LGAA 2 733.0000 1466 ## 1393 N400WN 23 1006.7826 23156 ## 1394 N401UA 70 1151.8000 80626 ## 1395 N401WN 28 962.3214 26945 ## 1396 N402AS 47 2402.0000 112894 ## 1397 N402UA 121 1150.3719 139195 ## 1398 N402WN 37 1120.7838 41469 ## 1399 N403AA 39 963.2051 37565 ## 1400 N403AS 51 2402.0000 122502 ## 1401 N403UA 110 1248.6000 137346 ## 1402 N403WN 17 966.9412 16438 ## 1403 N404UA 85 1191.8235 101305 ## 1404 N404WN 35 1112.1429 38925 ## 1405 N405UA 110 1197.7818 131756 ## 1406 N405WN 26 899.9231 23398 ## 1407 N406UA 103 1218.0000 125454 ## 1408 N406US 9 532.3333 4791 ## 1409 N406WN 22 1280.6364 28174 ## 1410 N407AS 41 2402.0000 98482 ## 1411 N407UA 79 1287.6835 101727 ## 1412 N407WN 28 813.4286 22776 ## 1413 N408AS 35 2402.0000 84070 ## 1414 N408UA 100 1220.9800 122098 ## 1415 N408WN 28 1111.7500 31129 ## 1416 N409AS 39 2402.0000 93678 ## 1417 N409UA 90 1282.7889 115451 ## 1418 N409US 7 531.1429 3718 ## 1419 N409WN 28 1039.1429 29096 ## 1420 N410UA 98 1321.8061 129537 ## 1421 N410WN 25 1005.4800 25137 ## 1422 N41104 118 788.0932 92995 ## 1423 N41135 107 1596.1308 170786 ## 1424 N41140 94 1525.1489 143364 ## 1425 N411UA 119 1125.8151 133972 ## 1426 N411WN 25 995.4400 24886 ## 1427 N412UA 105 1225.5524 128683 ## 1428 N412WN 22 805.0909 17712 ## 1429 N413AS 28 2402.0000 67256 ## 1430 N413UA 104 1273.0865 132401 ## 1431 N413WN 26 1008.3846 26218 ## 1432 N414UA 87 1260.4713 109661 ## 1433 N414WN 27 968.7037 26155 ## 1434 N415UA 99 1240.1717 122777 ## 1435 N415WN 26 926.4231 24087 ## 1436 N416UA 96 1229.6979 118051 ## 1437 N416WN 22 977.5000 21505 ## 1438 N417UA 80 1302.3125 104185 ## 1439 N417WN 29 963.5862 27944 ## 1440 N418UA 93 1366.3333 127069 ## 1441 N418WN 22 1218.0000 26796 ## 1442 N419AS 32 2402.0000 76864 ## 1443 N419UA 95 1194.6000 113487 ## 1444 N419US 7 529.0000 3703 ## 1445 N419WN 21 934.0476 19615 ## 1446 N420UA 86 1474.0581 126769 ## 1447 N420US 5 529.0000 2645 ## 1448 N420WN 25 1014.6000 25365 ## 1449 N421LV 29 1049.2414 30428 ## 1450 N421UA 110 1235.4273 135897 ## 1451 N422UA 106 1311.5283 139022 ## 1452 N422WN 27 915.0000 24705 ## 1453 N423AS 29 2402.0000 69658 ## 1454 N423UA 94 1223.5532 115014 ## 1455 N423WN 28 978.3214 27393 ## 1456 N424AA 44 960.5909 42266 ## 1457 N424UA 94 1309.2766 123072 ## 1458 N424WN 24 1019.5417 24469 ## 1459 N425AA 43 975.9070 41964 ## 1460 N425LV 23 987.3043 22708 ## 1461 N425UA 87 1162.9195 101174 ## 1462 N426AA 52 1053.6923 54792 ## 1463 N426UA 95 1246.7158 118438 ## 1464 N426US 6 531.5000 3189 ## 1465 N426WN 33 1051.5455 34701 ## 1466 N427SW 1 488.0000 488 ## 1467 N427UA 98 1211.1429 118692 ## 1468 N427US 3 529.0000 1587 ## 1469 N427WN 24 1065.2500 25566 ## 1470 N428UA 90 1242.5111 111826 ## 1471 N428WN 38 1104.1316 41957 ## 1472 N429UA 108 1195.4537 129109 ## 1473 N429WN 27 919.8519 24836 ## 1474 N430UA 95 1214.2632 115355 ## 1475 N430US 3 529.0000 1587 ## 1476 N430WN 25 919.4800 22987 ## 1477 N431AS 8 2402.0000 19216 ## 1478 N431UA 104 1140.6154 118624 ## 1479 N431WN 34 941.6765 32017 ## 1480 N432UA 75 1302.1467 97661 ## 1481 N432US 4 529.0000 2116 ## 1482 N432WN 40 1036.0500 41442 ## 1483 N433AA 22 1003.0000 22066 ## 1484 N433AS 7 2402.0000 16814 ## 1485 N433LV 31 1007.2581 31225 ## 1486 N433UA 79 1177.3165 93008 ## 1487 N433US 8 529.0000 4232 ## 1488 N434AA 43 968.3023 41637 ## 1489 N434UA 106 1213.0660 128585 ## 1490 N434US 9 530.6667 4776 ## 1491 N434WN 33 1025.6364 33846 ## 1492 N435AA 33 903.5455 29817 ## 1493 N435AS 4 2402.0000 9608 ## 1494 N435UA 100 1235.1700 123517 ## 1495 N435US 6 529.0000 3174 ## 1496 N435WN 25 1089.8400 27246 ## 1497 N436AA 45 925.6222 41653 ## 1498 N436UA 96 1161.6667 111520 ## 1499 N436WN 28 1096.8929 30713 ## 1500 N437AA 46 987.1087 45407 ## 1501 N437UA 95 1235.5474 117377 ## 1502 N437WN 34 984.8235 33484 ## 1503 N438AA 48 939.8542 45113 ## 1504 N438UA 84 1396.9524 117344 ## 1505 N438US 11 529.0000 5819 ## 1506 N438WN 23 1100.1739 25304 ## 1507 N439AA 53 1026.5283 54406 ## 1508 N439UA 113 1233.4159 139376 ## 1509 N439US 5 529.0000 2645 ## 1510 N439WN 24 968.0417 23233 ## 1511 N440AS 8 2402.0000 19216 ## 1512 N440LV 23 1002.6957 23062 ## 1513 N440UA 106 1328.6132 140833 ## 1514 N440US 5 529.0000 2645 ## 1515 N441UA 96 1356.0729 130183 ## 1516 N441US 2 529.0000 1058 ## 1517 N441WN 26 936.8077 24357 ## 1518 N442AS 5 2402.0000 12010 ## 1519 N442UA 96 1267.6250 121692 ## 1520 N442US 5 529.0000 2645 ## 1521 N442WN 27 1003.9259 27106 ## 1522 N443UA 96 1311.7812 125931 ## 1523 N443US 7 529.0000 3703 ## 1524 N443WN 23 1013.6087 23313 ## 1525 N444UA 95 1236.7053 117487 ## 1526 N444US 7 529.0000 3703 ## 1527 N444WN 33 1096.6667 36190 ## 1528 N445UA 95 1218.1158 115721 ## 1529 N445US 6 529.0000 3174 ## 1530 N445WN 30 989.9667 29699 ## 1531 N446UA 96 1305.2917 125308 ## 1532 N446WN 18 914.6667 16464 ## 1533 N447UA 106 1279.2358 135599 ## 1534 N447WN 31 1033.9677 32053 ## 1535 N448UA 91 1276.6593 116176 ## 1536 N448WN 21 1092.1429 22935 ## 1537 N449UA 131 1183.2519 155006 ## 1538 N449US 5 529.0000 2645 ## 1539 N449WN 32 1044.4375 33422 ## 1540 N450UW 6 529.0000 3174 ## 1541 N450WN 36 1014.7778 36532 ## 1542 N451UA 93 1188.3118 110513 ## 1543 N451UW 1 529.0000 529 ## 1544 N451WN 34 1044.4118 35510 ## 1545 N452UA 98 1315.8776 128956 ## 1546 N452UW 7 531.1429 3718 ## 1547 N452WN 27 971.5185 26231 ## 1548 N453UA 125 1218.1360 152267 ## 1549 N453UW 7 529.0000 3703 ## 1550 N453WN 38 1065.7632 40499 ## 1551 N45440 107 1713.3178 183325 ## 1552 N454AA 68 966.8088 65743 ## 1553 N454UA 96 1350.7604 129673 ## 1554 N454WN 29 1107.6207 32121 ## 1555 N455AA 41 1026.9512 42105 ## 1556 N455UA 101 1268.5743 128126 ## 1557 N455UW 10 530.5000 5305 ## 1558 N455WN 24 1010.0000 24240 ## 1559 N456AA 40 917.7000 36708 ## 1560 N456UA 95 1253.3579 119069 ## 1561 N456UW 1 529.0000 529 ## 1562 N456WN 38 978.7368 37192 ## 1563 N457UA 102 1277.9314 130349 ## 1564 N457UW 9 530.6667 4776 ## 1565 N457WN 24 1133.4583 27203 ## 1566 N458UA 98 1232.6327 120798 ## 1567 N458WN 34 1027.2647 34927 ## 1568 N45905 2 1400.0000 2800 ## 1569 N459UA 107 1172.8131 125491 ## 1570 N459UW 6 531.5000 3189 ## 1571 N459WN 28 956.2857 26776 ## 1572 N460UA 91 1119.8132 101903 ## 1573 N460UW 6 529.0000 3174 ## 1574 N460WN 36 999.2500 35973 ## 1575 N461UA 109 1332.7706 145272 ## 1576 N461WN 18 889.5556 16012 ## 1577 N462UA 116 1315.6724 152618 ## 1578 N462WN 27 934.0741 25220 ## 1579 N463UA 103 1296.7184 133562 ## 1580 N463WN 25 1004.8000 25120 ## 1581 N464UA 90 1154.0778 103867 ## 1582 N464WN 30 1045.6000 31368 ## 1583 N465UA 126 1348.5714 169920 ## 1584 N465WN 24 1015.2500 24366 ## 1585 N466AA 55 1025.5455 56405 ## 1586 N466UA 96 1204.6146 115643 ## 1587 N466WN 38 990.0000 37620 ## 1588 N467AA 49 870.0408 42632 ## 1589 N467UA 111 1198.4505 133028 ## 1590 N467WN 29 963.7586 27949 ## 1591 N468AA 59 956.5593 56437 ## 1592 N468UA 72 1201.7500 86526 ## 1593 N468WN 27 924.7778 24969 ## 1594 N469AA 37 957.4595 35426 ## 1595 N469UA 98 1125.2551 110275 ## 1596 N469WN 31 847.6774 26278 ## 1597 N470AA 45 875.3333 39390 ## 1598 N470UA 93 1247.0215 115973 ## 1599 N470WN 24 966.4583 23195 ## 1600 N471AA 53 1003.6604 53194 ## 1601 N471UA 97 1233.2680 119627 ## 1602 N472AA 31 1080.5484 33497 ## 1603 N472UA 95 1350.5684 128304 ## 1604 N472WN 29 1025.3103 29734 ## 1605 N473AA 51 964.1961 49174 ## 1606 N473UA 96 1201.9271 115385 ## 1607 N473WN 29 926.9310 26881 ## 1608 N47414 92 1668.9239 153541 ## 1609 N474AA 54 933.1111 50388 ## 1610 N474UA 104 1316.8558 136953 ## 1611 N474WN 33 969.5152 31994 ## 1612 N475AA 50 938.8000 46940 ## 1613 N475UA 112 1324.7411 148371 ## 1614 N475WN 30 981.7000 29451 ## 1615 N476AA 50 1063.8000 53190 ## 1616 N476UA 91 1205.4396 109695 ## 1617 N476WN 31 1059.4516 32843 ## 1618 N477AA 37 1046.1081 38706 ## 1619 N477UA 81 1178.3457 95446 ## 1620 N477WN 41 1072.6098 43977 ## 1621 N478AA 47 883.1915 41510 ## 1622 N478UA 111 1271.0090 141082 ## 1623 N478WN 31 984.3548 30515 ## 1624 N479AA 34 1026.0294 34885 ## 1625 N479UA 110 1254.9818 138048 ## 1626 N479WN 27 886.8889 23946 ## 1627 N480AA 56 846.6964 47415 ## 1628 N480UA 109 1295.1009 141166 ## 1629 N480WN 38 1063.0000 40394 ## 1630 N48127 93 1673.5591 155641 ## 1631 N481AA 39 960.9744 37478 ## 1632 N481UA 106 1226.1981 129977 ## 1633 N481WN 34 921.8824 31344 ## 1634 N482AA 71 931.3944 66129 ## 1635 N482UA 106 1347.9906 142887 ## 1636 N482WN 36 959.6667 34548 ## 1637 N483AA 45 1023.8000 46071 ## 1638 N483UA 101 1236.0099 124837 ## 1639 N483WN 18 1088.9444 19601 ## 1640 N484AA 37 971.9189 35961 ## 1641 N484UA 90 1301.2111 117109 ## 1642 N484WN 21 964.6667 20258 ## 1643 N485AA 34 1018.8529 34641 ## 1644 N485UA 93 1155.9140 107500 ## 1645 N485WN 26 1145.1923 29775 ## 1646 N486AA 47 1028.3617 48333 ## 1647 N486UA 91 1274.7473 116002 ## 1648 N486WN 29 1003.1379 29091 ## 1649 N487AA 65 1011.4000 65741 ## 1650 N487UA 122 1357.4016 165603 ## 1651 N487WN 34 1046.8235 35592 ## 1652 N488AA 57 1030.1404 58718 ## 1653 N488UA 98 1326.0204 129950 ## 1654 N488WN 31 1045.4516 32409 ## 1655 N48901 231 531.2900 122728 ## 1656 N489AA 46 957.0652 44025 ## 1657 N489UA 85 1284.6941 109199 ## 1658 N489WN 27 969.4444 26175 ## 1659 N490AA 49 985.2857 48279 ## 1660 N490UA 95 1319.2316 125327 ## 1661 N490WN 23 1122.6522 25821 ## 1662 N491AA 48 967.1875 46425 ## 1663 N491UA 117 1296.2137 151657 ## 1664 N491WN 38 1151.2105 43746 ## 1665 N492AA 44 981.7727 43198 ## 1666 N492UA 90 1249.7778 112480 ## 1667 N492WN 29 1019.7241 29572 ## 1668 N493AA 46 935.4565 43031 ## 1669 N493UA 105 1325.2476 139151 ## 1670 N493WN 30 1005.6667 30170 ## 1671 N494AA 43 977.0930 42015 ## 1672 N494UA 107 1320.0841 141249 ## 1673 N494WN 26 1016.8462 26438 ## 1674 N495UA 116 1196.4397 138787 ## 1675 N495WN 20 971.8000 19436 ## 1676 N496AA 41 957.0000 39237 ## 1677 N496UA 113 1298.7788 146762 ## 1678 N496WN 25 1079.5600 26989 ## 1679 N497UA 109 1298.0550 141488 ## 1680 N497WN 29 993.7931 28820 ## 1681 N498UA 104 1215.7788 126441 ## 1682 N498WN 26 851.6923 22144 ## 1683 N499AA 44 962.9545 42370 ## 1684 N499WN 29 924.3793 26807 ## 1685 N4UBAA 45 1015.7333 45708 ## 1686 N4UCAA 59 1031.7627 60874 ## 1687 N4WAAA 52 964.4038 50149 ## 1688 N4WJAA 46 970.2609 44632 ## 1689 N4WKAA 56 987.7143 55312 ## 1690 N4WLAA 60 920.3167 55219 ## 1691 N4WMAA 52 929.9038 48355 ## 1692 N4WNAA 54 943.6481 50957 ## 1693 N4WPAA 49 951.7959 46638 ## 1694 N4WRAA 21 1010.0952 21212 ## 1695 N4WSAA 43 979.1628 42104 ## 1696 N4WTAA 48 951.6250 45678 ## 1697 N4WVAA 43 1020.0930 43864 ## 1698 N4WWAA 17 949.2941 16138 ## 1699 N4WYAA 3 1389.0000 4167 ## 1700 N4XBAA 55 913.5273 50244 ## 1701 N4XCAA 45 864.2000 38889 ## 1702 N4XDAA 56 979.6429 54860 ## 1703 N4XEAA 53 935.6038 49587 ## 1704 N4XFAA 51 965.2745 49229 ## 1705 N4XGAA 63 896.0317 56450 ## 1706 N4XHAA 53 895.8679 47481 ## 1707 N4XJAA 44 1052.4545 46308 ## 1708 N4XKAA 39 997.2821 38894 ## 1709 N4XLAA 62 960.8065 59570 ## 1710 N4XMAA 69 961.9710 66376 ## 1711 N4XNAA 51 965.2353 49227 ## 1712 N4XPAA 49 1005.3469 49262 ## 1713 N4XRAA 49 947.2041 46413 ## 1714 N4XSAA 41 925.4146 37942 ## 1715 N4XTAA 65 912.8000 59332 ## 1716 N4XUAA 44 853.4773 37553 ## 1717 N4XVAA 58 952.1034 55222 ## 1718 N4XWAA 26 1083.6923 28176 ## 1719 N4XXAA 57 908.9474 51810 ## 1720 N4XYAA 52 982.6923 51100 ## 1721 N4YAAA 51 1016.0196 51817 ## 1722 N4YBAA 54 1016.9630 54916 ## 1723 N4YCAA 60 964.9333 57896 ## 1724 N4YDAA 64 907.8125 58100 ## 1725 N4YEAA 56 927.2500 51926 ## 1726 N4YFAA 61 987.4754 60236 ## 1727 N4YGAA 50 1015.4400 50772 ## 1728 N4YHAA 43 949.0000 40807 ## 1729 N4YJAA 62 921.5645 57137 ## 1730 N4YKAA 41 1024.0000 41984 ## 1731 N4YLAA 40 1094.3250 43773 ## 1732 N4YMAA 53 984.1887 52162 ## 1733 N4YNAA 70 981.1143 68678 ## 1734 N4YPAA 57 921.3860 52519 ## 1735 N4YRAA 50 916.0400 45802 ## 1736 N4YSAA 48 932.2500 44748 ## 1737 N4YTAA 53 882.1698 46755 ## 1738 N4YUAA 42 873.9762 36707 ## 1739 N500MQ 237 650.4599 154159 ## 1740 N501AA 55 990.0727 54454 ## 1741 N501MJ 15 229.0000 3435 ## 1742 N501MQ 250 713.9240 178481 ## 1743 N501US 3 762.0000 2286 ## 1744 N502AA 47 1011.1064 47522 ## 1745 N502MJ 15 229.0000 3435 ## 1746 N502MQ 282 667.1206 188128 ## 1747 N502SW 1 872.0000 872 ## 1748 N502UA 286 2539.4266 726276 ## 1749 N503AA 57 933.4912 53209 ## 1750 N503JB 268 1331.2836 356784 ## 1751 N503MJ 16 229.0000 3664 ## 1752 N503MQ 191 669.8429 127940 ## 1753 N503UA 81 1831.1728 148325 ## 1754 N503US 3 762.0000 2286 ## 1755 N504AA 43 1017.6744 43760 ## 1756 N504JB 286 1308.9895 374371 ## 1757 N504MJ 13 229.0000 2977 ## 1758 N504MQ 271 683.6605 185272 ## 1759 N504UA 114 1779.8684 202905 ## 1760 N505AA 45 893.7333 40218 ## 1761 N505JB 270 1314.6519 354956 ## 1762 N505MJ 17 229.0000 3893 ## 1763 N505MQ 242 670.3182 162217 ## 1764 N505SW 1 185.0000 185 ## 1765 N505UA 282 2542.3085 716931 ## 1766 N506AA 10 1054.2000 10542 ## 1767 N506AS 9 2402.0000 21618 ## 1768 N506JB 242 1341.6074 324669 ## 1769 N506MJ 12 229.0000 2748 ## 1770 N506MQ 284 678.2289 192617 ## 1771 N506SW 7 949.0000 6643 ## 1772 N506UA 38 1733.1316 65859 ## 1773 N507AY 42 1769.1905 74306 ## 1774 N507JB 284 1339.7007 380475 ## 1775 N507MJ 21 229.0000 4809 ## 1776 N507MQ 264 648.0114 171075 ## 1777 N507UA 84 1697.8214 142617 ## 1778 N507US 3 756.6667 2270 ## 1779 N508AA 42 1042.9524 43804 ## 1780 N508AS 8 2402.0000 19216 ## 1781 N508AY 56 1750.0000 98000 ## 1782 N508JB 291 1302.2577 378957 ## 1783 N508MJ 10 229.0000 2290 ## 1784 N508MQ 298 641.0738 191040 ## 1785 N508SW 6 872.0000 5232 ## 1786 N508UA 238 2551.9538 607365 ## 1787 N509AA 1 1389.0000 1389 ## 1788 N509AY 49 1659.3469 81308 ## 1789 N509JB 324 1268.5247 411002 ## 1790 N509MJ 18 229.0000 4122 ## 1791 N509MQ 241 651.7012 157060 ## 1792 N509SW 3 823.0000 2469 ## 1793 N509UA 98 1739.1429 170436 ## 1794 N510JB 297 1333.0168 395906 ## 1795 N510MJ 19 229.0000 4351 ## 1796 N510MQ 299 667.7826 199667 ## 1797 N510SW 1 872.0000 872 ## 1798 N510UA 248 2544.2056 630963 ## 1799 N510UW 48 1716.4167 82388 ## 1800 N511AA 14 882.2143 12351 ## 1801 N511MJ 14 229.0000 3206 ## 1802 N511MQ 287 675.5226 193875 ## 1803 N511SW 2 810.0000 1620 ## 1804 N511UA 109 1834.5688 199968 ## 1805 N512AA 32 994.5938 31827 ## 1806 N512AS 6 2402.0000 14412 ## 1807 N512MJ 15 229.0000 3435 ## 1808 N512MQ 226 663.9956 150063 ## 1809 N512SW 2 872.0000 1744 ## 1810 N512UA 281 2540.9680 714012 ## 1811 N513AA 42 966.1190 40577 ## 1812 N513AS 5 2402.0000 12010 ## 1813 N513MJ 19 229.0000 4351 ## 1814 N513MQ 287 633.6481 181857 ## 1815 N513UA 102 1825.3529 186186 ## 1816 N514AA 44 974.6818 42886 ## 1817 N514AS 3 2402.0000 7206 ## 1818 N514MJ 12 229.0000 2748 ## 1819 N514MQ 253 647.4822 163813 ## 1820 N514SW 2 872.0000 1744 ## 1821 N514UA 89 1823.8427 162322 ## 1822 N515AA 29 1116.3793 32375 ## 1823 N515MJ 16 229.0000 3664 ## 1824 N515MQ 241 665.9253 160488 ## 1825 N515SW 3 872.0000 2616 ## 1826 N515UA 81 1807.6667 146421 ## 1827 N516AA 27 1036.7407 27992 ## 1828 N516AS 5 2402.0000 12010 ## 1829 N516JB 288 1248.5590 359585 ## 1830 N516LR 16 229.0000 3664 ## 1831 N516MQ 269 640.2714 172233 ## 1832 N516UA 68 1679.5000 114206 ## 1833 N517AA 17 1082.4118 18401 ## 1834 N517AS 2 2402.0000 4804 ## 1835 N517JB 285 1328.4000 378594 ## 1836 N517MQ 259 663.0965 171742 ## 1837 N517UA 34 2550.0882 86703 ## 1838 N518AA 14 1109.2143 15529 ## 1839 N518AS 2 2402.0000 4804 ## 1840 N518LR 14 229.0000 3206 ## 1841 N518MQ 319 651.8025 207925 ## 1842 N518UA 237 2547.1266 603669 ## 1843 N519AA 38 982.4474 37333 ## 1844 N519AS 5 2402.0000 12010 ## 1845 N519JB 264 1312.3977 346473 ## 1846 N519LR 18 229.0000 4122 ## 1847 N519MQ 246 642.7967 158128 ## 1848 N519UA 90 1718.1111 154630 ## 1849 N519US 4 762.0000 3048 ## 1850 N519UW 46 1802.1304 82898 ## 1851 N520AA 51 953.6667 48637 ## 1852 N520AS 5 2402.0000 12010 ## 1853 N520JB 284 1331.7782 378225 ## 1854 N520MQ 306 655.2124 200495 ## 1855 N520UA 91 1747.1319 158989 ## 1856 N520UW 52 1688.0000 87776 ## 1857 N521AA 35 1069.4000 37429 ## 1858 N521JB 263 1276.1825 335636 ## 1859 N521LR 17 229.0000 3893 ## 1860 N521MQ 296 629.5169 186337 ## 1861 N521SW 1 872.0000 872 ## 1862 N521UA 75 1789.8667 134240 ## 1863 N521US 7 798.8571 5592 ## 1864 N521UW 56 1663.6429 93164 ## 1865 N521VA 27 2536.2222 68478 ## 1866 N522AA 40 967.3250 38693 ## 1867 N522LR 14 229.0000 3206 ## 1868 N522MQ 300 660.4800 198144 ## 1869 N522SW 2 872.0000 1744 ## 1870 N522UA 94 1805.5957 169726 ## 1871 N522US 5 1093.6000 5468 ## 1872 N522VA 32 2526.8438 80859 ## 1873 N523AS 7 2402.0000 16814 ## 1874 N523JB 321 1366.6885 438707 ## 1875 N523MQ 334 679.3892 226916 ## 1876 N523SW 2 872.0000 1744 ## 1877 N523UA 100 1705.1200 170512 ## 1878 N523US 8 758.0000 6064 ## 1879 N523UW 39 1698.3333 66235 ## 1880 N523VA 28 2522.1429 70620 ## 1881 N524AS 9 2402.0000 21618 ## 1882 N524JB 279 1461.7634 407832 ## 1883 N524MQ 244 632.2951 154280 ## 1884 N524SW 2 872.0000 1744 ## 1885 N524UA 116 1781.5862 206664 ## 1886 N524UW 49 1584.2041 77626 ## 1887 N524VA 28 2521.3929 70599 ## 1888 N525AA 43 1013.2326 43569 ## 1889 N525AS 6 2402.0000 14412 ## 1890 N525MQ 314 655.4299 205805 ## 1891 N525SW 2 798.5000 1597 ## 1892 N525UA 227 2547.8590 578364 ## 1893 N525US 3 762.0000 2286 ## 1894 N525VA 31 2504.1290 77628 ## 1895 N526AA 52 985.3077 51236 ## 1896 N526AS 9 2402.0000 21618 ## 1897 N526JB 276 1302.6594 359534 ## 1898 N526MQ 297 658.3805 195539 ## 1899 N526SW 2 872.0000 1744 ## 1900 N526UA 93 1805.9785 167956 ## 1901 N526VA 28 2517.4286 70488 ## 1902 N527AA 32 938.5312 30033 ## 1903 N527AS 4 2402.0000 9608 ## 1904 N527JB 270 1372.8037 370657 ## 1905 N527MQ 317 661.7760 209783 ## 1906 N527SW 2 872.0000 1744 ## 1907 N527UA 25 1679.0800 41977 ## 1908 N527VA 37 2536.1351 93837 ## 1909 N528AA 54 985.8704 53237 ## 1910 N528AS 5 2402.0000 12010 ## 1911 N528MQ 346 647.3584 223986 ## 1912 N528UA 98 1880.0918 184249 ## 1913 N528VA 23 2516.7391 57885 ## 1914 N529AA 26 942.7692 24512 ## 1915 N529AS 4 2402.0000 9608 ## 1916 N529JB 288 1370.6076 394735 ## 1917 N529UA 117 1729.5299 202355 ## 1918 N529VA 34 2535.6176 86211 ## 1919 N530AA 38 1023.7895 38904 ## 1920 N530AS 8 2402.0000 19216 ## 1921 N530MQ 302 658.1556 198763 ## 1922 N530UA 104 1727.2596 179635 ## 1923 N530US 5 762.0000 3810 ## 1924 N530VA 35 2514.2571 87999 ## 1925 N531AS 5 2402.0000 12010 ## 1926 N531JB 252 1340.0357 337689 ## 1927 N531MQ 349 662.3295 231153 ## 1928 N531US 6 718.6667 4312 ## 1929 N532AS 10 2402.0000 24020 ## 1930 N532MQ 340 642.1265 218323 ## 1931 N532UA 75 2554.9200 191619 ## 1932 N532US 2 762.0000 1524 ## 1933 N533AS 8 2402.0000 19216 ## 1934 N533UA 94 1645.3404 154662 ## 1935 N533US 5 755.6000 3778 ## 1936 N53441 102 1661.2745 169450 ## 1937 N53442 108 1643.0370 177448 ## 1938 N534AS 2 2402.0000 4804 ## 1939 N534JB 282 1293.5816 364790 ## 1940 N534MQ 364 669.9808 243873 ## 1941 N534UA 92 1596.2609 146856 ## 1942 N534US 7 798.8571 5592 ## 1943 N534UW 47 1775.7234 83459 ## 1944 N535AS 4 2402.0000 9608 ## 1945 N535JB 261 1437.7050 375241 ## 1946 N535MQ 264 678.4129 179101 ## 1947 N535UA 98 1658.3367 162517 ## 1948 N535UW 60 1669.4000 100164 ## 1949 N536AA 4 935.7500 3743 ## 1950 N536AS 1 2402.0000 2402 ## 1951 N536JB 268 1283.0784 343865 ## 1952 N536UA 96 1814.1250 174156 ## 1953 N536UW 81 558.4938 45238 ## 1954 N537AA 36 1048.0833 37731 ## 1955 N537AS 3 2402.0000 7206 ## 1956 N537JB 286 1262.5490 361089 ## 1957 N537MQ 289 687.3529 198645 ## 1958 N537UA 93 1798.8495 167293 ## 1959 N537UW 84 577.2024 48485 ## 1960 N538AA 36 1070.1389 38525 ## 1961 N538AS 3 2402.0000 7206 ## 1962 N538CA 44 683.9318 30093 ## 1963 N538UA 106 1761.9528 186767 ## 1964 N538UW 82 537.6341 44086 ## 1965 N539AA 72 941.5833 67794 ## 1966 N539MQ 288 673.5590 193985 ## 1967 N539UA 94 1774.7128 166823 ## 1968 N539US 3 762.0000 2286 ## 1969 N539UW 96 555.4167 53320 ## 1970 N540AA 38 1012.0000 38456 ## 1971 N540UA 87 1776.2529 154534 ## 1972 N540US 11 760.5455 8366 ## 1973 N540UW 85 537.6824 45703 ## 1974 N541AA 46 1006.9565 46320 ## 1975 N541UA 71 1753.1408 124473 ## 1976 N541US 5 762.0000 3810 ## 1977 N541UW 39 1615.1538 62991 ## 1978 N54241 108 1347.1481 145492 ## 1979 N542AA 70 1036.8857 72582 ## 1980 N542MQ 363 671.7713 243853 ## 1981 N542US 6 762.0000 4572 ## 1982 N542UW 62 1633.0000 101246 ## 1983 N543AA 47 1005.9574 47280 ## 1984 N543MQ 202 685.4307 138457 ## 1985 N543UA 25 1930.6800 48267 ## 1986 N543US 4 762.0000 3048 ## 1987 N543UW 82 537.7439 44095 ## 1988 N544AA 63 970.8730 61165 ## 1989 N544MQ 254 679.1417 172502 ## 1990 N544UA 30 2126.5333 63796 ## 1991 N544UW 53 1696.7736 89929 ## 1992 N545AA 43 1038.9535 44675 ## 1993 N545UA 34 2174.3529 73928 ## 1994 N545UW 52 1595.0000 82940 ## 1995 N546AA 51 988.2941 50403 ## 1996 N546AS 13 2402.0000 31226 ## 1997 N546MQ 248 683.7298 169565 ## 1998 N546UA 82 2447.2683 200676 ## 1999 N546UW 53 1605.5283 85093 ## 2000 N54711 148 1366.2905 202211 ## 2001 N547AA 63 963.1587 60679 ## 2002 N547JB 285 1371.3860 390845 ## 2003 N547UA 33 1945.9394 64216 ## 2004 N547US 2 762.0000 1524 ## 2005 N547UW 60 1696.2667 101776 ## 2006 N548AA 49 1051.8776 51542 ## 2007 N548AS 14 2402.0000 33628 ## 2008 N548UA 26 1986.1923 51641 ## 2009 N548US 8 947.7500 7582 ## 2010 N548UW 52 1688.0577 87779 ## 2011 N549AA 28 974.1071 27275 ## 2012 N549AS 16 2402.0000 38432 ## 2013 N549UA 23 2147.4783 49392 ## 2014 N549US 5 1104.6000 5523 ## 2015 N549UW 52 1874.0000 97448 ## 2016 N550AA 30 850.9667 25529 ## 2017 N550NW 7 762.0000 5334 ## 2018 N550UA 14 1783.0000 24962 ## 2019 N550UW 58 1652.7241 95858 ## 2020 N550WN 23 1088.7826 25042 ## 2021 N551AA 40 953.5750 38143 ## 2022 N551AS 22 2402.0000 52844 ## 2023 N551NW 7 762.0000 5334 ## 2024 N551UA 38 1894.1053 71976 ## 2025 N551UW 59 1633.8814 96399 ## 2026 N551WN 24 1057.5000 25380 ## 2027 N552AA 30 961.5000 28845 ## 2028 N552AS 17 2402.0000 40834 ## 2029 N552JB 311 1309.0096 407102 ## 2030 N552NW 4 762.0000 3048 ## 2031 N552UA 24 1832.2083 43973 ## 2032 N552UW 54 1585.8148 85634 ## 2033 N552WN 22 1116.0455 24553 ## 2034 N553AA 52 937.5000 48750 ## 2035 N553AS 18 2402.0000 43236 ## 2036 N553NW 5 762.0000 3810 ## 2037 N553UA 122 1738.8279 212137 ## 2038 N553UW 41 1445.2927 59257 ## 2039 N553WN 18 950.3889 17107 ## 2040 N554AA 57 984.4035 56111 ## 2041 N554JB 303 1332.6469 403792 ## 2042 N554NW 8 969.5000 7756 ## 2043 N554UA 241 2545.0083 613347 ## 2044 N554UW 88 539.0568 47437 ## 2045 N554WN 28 1237.2857 34644 ## 2046 N555AA 43 972.3023 41809 ## 2047 N555AY 67 539.0746 36118 ## 2048 N555LV 31 1084.1613 33609 ## 2049 N555NW 10 762.0000 7620 ## 2050 N555UA 232 2548.2026 591183 ## 2051 N556AA 51 1023.1373 52180 ## 2052 N556AS 12 2402.0000 28824 ## 2053 N556JB 301 1275.4950 383924 ## 2054 N556NW 6 762.0000 4572 ## 2055 N556UA 97 1768.3608 171531 ## 2056 N556UW 77 538.9740 41501 ## 2057 N556WN 37 969.5946 35875 ## 2058 N557AA 44 1000.5909 44026 ## 2059 N557AS 1 2402.0000 2402 ## 2060 N557NW 10 1250.4000 12504 ## 2061 N557UA 259 2548.2857 660006 ## 2062 N557UW 62 616.0968 38198 ## 2063 N558AA 38 953.2895 36225 ## 2064 N558AS 6 2402.0000 14412 ## 2065 N558JB 310 1385.7226 429574 ## 2066 N558UA 95 1829.5263 173805 ## 2067 N558UW 81 538.8519 43647 ## 2068 N559AA 57 882.0175 50275 ## 2069 N559AS 7 2402.0000 16814 ## 2070 N559JB 265 1383.9358 366743 ## 2071 N559UA 97 1916.9381 185943 ## 2072 N559UW 91 536.7473 48844 ## 2073 N560AA 37 961.6486 35581 ## 2074 N560AS 1 2402.0000 2402 ## 2075 N560UA 273 2543.3077 694323 ## 2076 N560UW 69 560.9710 38707 ## 2077 N561AA 41 1016.3902 41672 ## 2078 N561JB 301 1307.5116 393561 ## 2079 N561UA 103 1778.7087 183207 ## 2080 N561UW 85 539.0235 45817 ## 2081 N562AS 2 2402.0000 4804 ## 2082 N562JB 315 1243.7810 391791 ## 2083 N562UA 86 1813.1744 155933 ## 2084 N562UW 83 538.1446 44666 ## 2085 N563AS 7 2402.0000 16814 ## 2086 N563JB 274 1351.6350 370348 ## 2087 N563UA 114 1825.5789 208116 ## 2088 N563UW 60 537.7500 32265 ## 2089 N564AA 59 987.5763 58267 ## 2090 N564AS 3 2402.0000 7206 ## 2091 N564JB 286 1338.8112 382900 ## 2092 N564UA 106 1804.8113 191310 ## 2093 N564UW 86 536.7442 46160 ## 2094 N565AA 41 956.6341 39222 ## 2095 N565AS 3 2402.0000 7206 ## 2096 N565JB 267 1336.6067 356874 ## 2097 N565UA 93 1846.6559 171739 ## 2098 N565UW 91 554.9890 50504 ## 2099 N566AA 36 1057.6944 38077 ## 2100 N566AS 8 2402.0000 19216 ## 2101 N566JB 261 1324.0345 345573 ## 2102 N566UA 111 1676.3423 186074 ## 2103 N566UW 87 537.0000 46719 ## 2104 N567AA 63 933.6032 58817 ## 2105 N567UA 105 1730.5905 181712 ## 2106 N567UW 41 536.8293 22010 ## 2107 N56859 40 1848.4250 73937 ## 2108 N568AA 44 967.2500 42559 ## 2109 N568AS 5 2402.0000 12010 ## 2110 N568JB 295 1248.0881 368186 ## 2111 N568UA 110 2064.9091 227140 ## 2112 N568UW 23 539.8261 12416 ## 2113 N569AA 44 984.8636 43334 ## 2114 N569AS 1 2402.0000 2402 ## 2115 N569JB 207 1316.9179 272602 ## 2116 N569UA 84 1772.8452 148919 ## 2117 N569UW 25 538.3600 13459 ## 2118 N57016 1 2454.0000 2454 ## 2119 N570AA 63 918.8095 57885 ## 2120 N570AS 5 2402.0000 12010 ## 2121 N570JB 284 1313.3028 372978 ## 2122 N570UA 95 1645.4737 156320 ## 2123 N570UW 6 1884.3333 11306 ## 2124 N57111 84 1718.3333 144340 ## 2125 N571AA 53 972.4151 51538 ## 2126 N571JB 256 1316.8125 337104 ## 2127 N571UA 86 1759.4070 151309 ## 2128 N571UW 12 1884.3333 22612 ## 2129 N572UA 77 1938.3506 149253 ## 2130 N572UW 2 2153.0000 4306 ## 2131 N573AA 50 922.1600 46108 ## 2132 N573UA 105 1782.8476 187199 ## 2133 N57439 103 1738.2039 179035 ## 2134 N574AA 36 978.5556 35228 ## 2135 N574UA 96 1695.0938 162729 ## 2136 N575AA 39 1140.7179 44488 ## 2137 N575UA 89 1844.8202 164189 ## 2138 N576AA 54 1064.5370 57485 ## 2139 N576UA 94 1779.1596 167241 ## 2140 N577AA 28 1084.5000 30366 ## 2141 N577AS 3 2402.0000 7206 ## 2142 N577UA 94 1789.8404 168245 ## 2143 N57852 51 2123.7059 108309 ## 2144 N57855 47 2057.2340 96690 ## 2145 N57857 32 1985.2500 63528 ## 2146 N57862 12 1802.6667 21632 ## 2147 N57863 14 1778.7143 24902 ## 2148 N57864 13 2388.9231 31056 ## 2149 N57868 16 1980.8125 31693 ## 2150 N57869 13 2006.6154 26086 ## 2151 N57870 9 1815.5556 16340 ## 2152 N578AA 45 1062.2000 47799 ## 2153 N578UA 108 1617.2593 174664 ## 2154 N579AA 51 935.0980 47690 ## 2155 N579AS 2 2402.0000 4804 ## 2156 N579JB 264 1278.2652 337462 ## 2157 N579UA 103 1847.0194 190243 ## 2158 N580AA 41 940.5854 38564 ## 2159 N580JB 271 1339.3284 362958 ## 2160 N580UA 87 1813.0000 157731 ## 2161 N58101 82 1430.0732 117266 ## 2162 N581AA 35 967.3143 33856 ## 2163 N581AS 8 2402.0000 19216 ## 2164 N581UA 57 1807.5088 103028 ## 2165 N582AA 59 1017.9831 60061 ## 2166 N582CA 41 608.4634 24947 ## 2167 N583AA 63 908.9365 57263 ## 2168 N583AS 2 2402.0000 4804 ## 2169 N583JB 278 1472.8237 409445 ## 2170 N584AA 64 991.7031 63469 ## 2171 N584AS 7 2402.0000 16814 ## 2172 N584JB 309 1315.5631 406509 ## 2173 N584UA 62 1876.0000 116312 ## 2174 N585AA 43 973.4884 41860 ## 2175 N585AS 2 2402.0000 4804 ## 2176 N585JB 308 1324.1851 407849 ## 2177 N585UA 105 1757.1714 184503 ## 2178 N586AA 46 1093.2609 50290 ## 2179 N586AS 2 2402.0000 4804 ## 2180 N586JB 283 1329.1025 376136 ## 2181 N586UA 67 1733.6567 116155 ## 2182 N587AA 46 1040.4565 47861 ## 2183 N587AS 8 2402.0000 19216 ## 2184 N587JB 295 1288.8034 380197 ## 2185 N587NW 1 762.0000 762 ## 2186 N587UA 103 2071.0777 213321 ## 2187 N588JB 267 1294.5993 345658 ## 2188 N588UA 145 2277.2000 330194 ## 2189 N589AA 50 925.6400 46282 ## 2190 N589AS 2 2402.0000 4804 ## 2191 N589JB 306 1218.1209 372745 ## 2192 N589UA 174 2474.5805 430577 ## 2193 N59053 23 3828.8696 88064 ## 2194 N590AA 40 860.3250 34413 ## 2195 N590AS 4 2402.0000 9608 ## 2196 N590JB 325 1308.9846 425420 ## 2197 N590NW 1 762.0000 762 ## 2198 N590UA 92 2501.3152 230121 ## 2199 N591AA 51 883.9804 45083 ## 2200 N591JB 285 1333.6491 380090 ## 2201 N592AA 58 913.3793 52976 ## 2202 N592AS 6 2402.0000 14412 ## 2203 N592JB 296 1334.8480 395115 ## 2204 N592UA 48 1869.8333 89752 ## 2205 N593AA 51 999.4118 50970 ## 2206 N593AS 2 2402.0000 4804 ## 2207 N593JB 294 1284.4184 377619 ## 2208 N593UA 86 1826.3372 157065 ## 2209 N594AA 50 925.3000 46265 ## 2210 N594AS 6 2402.0000 14412 ## 2211 N594JB 297 1331.1987 395366 ## 2212 N594NW 1 509.0000 509 ## 2213 N594UA 109 1645.2569 179333 ## 2214 N595AA 54 942.4259 50891 ## 2215 N595JB 316 1336.6171 422371 ## 2216 N595NW 1 762.0000 762 ## 2217 N595UA 201 2468.4478 496158 ## 2218 N59630 4 1404.0000 5616 ## 2219 N596AA 50 992.3400 49617 ## 2220 N596AS 5 2402.0000 12010 ## 2221 N596UA 230 2531.7652 582306 ## 2222 N597AA 47 991.6809 46609 ## 2223 N597AS 4 2402.0000 9608 ## 2224 N597JB 274 1259.9124 345216 ## 2225 N597UA 180 2483.6667 447060 ## 2226 N598AA 58 906.8621 52598 ## 2227 N598JB 304 1320.5395 401444 ## 2228 N598UA 127 2490.2598 316263 ## 2229 N599AA 62 951.9032 59018 ## 2230 N599JB 312 1290.4744 402628 ## 2231 N5BRAA 40 1334.3000 53372 ## 2232 N5BSAA 34 1368.9706 46545 ## 2233 N5BTAA 42 1336.0714 56115 ## 2234 N5BVAA 32 1313.1250 42020 ## 2235 N5BYAA 39 1294.7436 50495 ## 2236 N5CAAA 31 1399.9032 43397 ## 2237 N5CBAA 35 1320.6286 46222 ## 2238 N5CCAA 30 1312.8333 39385 ## 2239 N5CDAA 42 1397.6190 58700 ## 2240 N5CEAA 20 1266.3500 25327 ## 2241 N5CFAA 33 1243.7879 41045 ## 2242 N5CGAA 43 1276.3953 54885 ## 2243 N5CHAA 36 1371.6944 49381 ## 2244 N5CKAA 31 1305.6774 40476 ## 2245 N5CLAA 17 1298.5294 22075 ## 2246 N5CNAA 20 1175.5000 23510 ## 2247 N5CPAA 32 1467.0000 46944 ## 2248 N5CRAA 39 1275.7436 49754 ## 2249 N5CSAA 28 1251.8571 35052 ## 2250 N5CYAA 11 1192.9091 13122 ## 2251 N5DAAA 16 1238.5000 19816 ## 2252 N5DBAA 11 1313.4545 14448 ## 2253 N5DCAA 16 1332.3125 21317 ## 2254 N5DDAA 26 1430.1923 37185 ## 2255 N5DEAA 5 1467.2000 7336 ## 2256 N5DFAA 7 1120.2857 7842 ## 2257 N5DHAA 6 1319.3333 7916 ## 2258 N5DJAA 1 1089.0000 1089 ## 2259 N5DKAA 2 1837.5000 3675 ## 2260 N5DLAA 17 1265.7059 21517 ## 2261 N5DMAA 33 1242.3939 40999 ## 2262 N5DNAA 28 1275.0714 35702 ## 2263 N5DPAA 12 1324.9167 15899 ## 2264 N5DRAA 12 1313.8333 15766 ## 2265 N5DSAA 29 1369.6897 39721 ## 2266 N5DTAA 41 1270.2439 52080 ## 2267 N5DUAA 39 1339.6667 52247 ## 2268 N5DVAA 27 1301.9630 35153 ## 2269 N5DWAA 34 1205.7353 40995 ## 2270 N5DXAA 26 1198.0000 31148 ## 2271 N5DYAA 34 1295.3529 44042 ## 2272 N5EAAA 40 1512.3500 60494 ## 2273 N5EBAA 29 1347.2759 39071 ## 2274 N5ECAA 1 1085.0000 1085 ## 2275 N5EDAA 5 1642.6000 8213 ## 2276 N5EEAA 40 1385.8250 55433 ## 2277 N5EFAA 33 1238.4545 40869 ## 2278 N5EGAA 41 1524.3415 62498 ## 2279 N5EHAA 34 1482.6765 50411 ## 2280 N5EJAA 21 1311.8571 27549 ## 2281 N5EKAA 23 1247.8696 28701 ## 2282 N5ELAA 33 1352.3939 44629 ## 2283 N5EMAA 38 1283.4211 48770 ## 2284 N5ENAA 27 1330.4074 35921 ## 2285 N5EPAA 19 1180.9474 22438 ## 2286 N5ERAA 1 2475.0000 2475 ## 2287 N5ESAA 2 1089.0000 2178 ## 2288 N5ETAA 125 1318.5760 164822 ## 2289 N5EUAA 102 1263.0294 128829 ## 2290 N5EVAA 89 1331.1910 118476 ## 2291 N5EWAA 105 1333.6476 140033 ## 2292 N5EXAA 109 1297.5413 141432 ## 2293 N5EYAA 114 1314.7368 149880 ## 2294 N5FAAA 117 1318.9744 154320 ## 2295 N5FBAA 4 1434.5000 5738 ## 2296 N5FCAA 1 1089.0000 1089 ## 2297 N5FDAA 1 1089.0000 1089 ## 2298 N5FEAA 97 1265.6804 122771 ## 2299 N5FFAA 80 1271.2250 101698 ## 2300 N5FGAA 70 1308.6286 91604 ## 2301 N5FHAA 94 1299.6064 122163 ## 2302 N5FJAA 84 1312.2024 110225 ## 2303 N5FKAA 105 1305.0095 137026 ## 2304 N5FLAA 72 1293.2083 93111 ## 2305 N5FMAA 109 1314.4128 143271 ## 2306 N5FNAA 101 1315.1386 132829 ## 2307 N5FPAA 104 1226.6250 127569 ## 2308 N5FRAA 72 1315.3056 94702 ## 2309 N5FSAA 100 1320.8900 132089 ## 2310 N5FTAA 102 1357.0196 138416 ## 2311 N5PBMQ 283 658.4770 186349 ## 2312 N600LR 257 626.4125 160988 ## 2313 N600MQ 17 399.4706 6791 ## 2314 N600QX 188 575.2128 108140 ## 2315 N600TR 2 488.0000 976 ## 2316 N600WN 5 891.8000 4459 ## 2317 N601AW 66 1405.8485 92786 ## 2318 N601LR 227 667.9383 151622 ## 2319 N601MQ 38 479.1579 18208 ## 2320 N601WN 2 1141.5000 2283 ## 2321 N601XJ 48 375.8125 18039 ## 2322 N602AW 48 1767.9167 84860 ## 2323 N602DL 34 1195.3824 40643 ## 2324 N602LR 274 590.1715 161707 ## 2325 N602MQ 13 457.3846 5946 ## 2326 N602SW 7 933.5714 6535 ## 2327 N602XJ 41 373.1707 15300 ## 2328 N603AT 34 686.8529 23353 ## 2329 N603DL 49 887.2245 43474 ## 2330 N603JB 311 1290.7781 401432 ## 2331 N603MQ 25 570.9200 14273 ## 2332 N603SW 7 850.8571 5956 ## 2333 N604AW 67 1609.4627 107834 ## 2334 N604DL 30 934.9333 28048 ## 2335 N604LR 231 665.7273 153783 ## 2336 N604MQ 29 461.9655 13397 ## 2337 N604QX 128 560.4375 71736 ## 2338 N604SW 12 799.8333 9598 ## 2339 N605JB 257 1328.0156 341300 ## 2340 N605LR 275 623.9709 171592 ## 2341 N605MQ 10 566.1000 5661 ## 2342 N605QX 136 564.2647 76740 ## 2343 N605SW 6 778.8333 4673 ## 2344 N606JB 314 1262.6210 396463 ## 2345 N606LR 36 637.7778 22960 ## 2346 N606MQ 20 419.3000 8386 ## 2347 N606SW 4 926.2500 3705 ## 2348 N607AT 46 666.7826 30672 ## 2349 N607JB 295 1337.0407 394427 ## 2350 N607LR 34 605.5882 20590 ## 2351 N607MQ 19 448.9474 8530 ## 2352 N607SW 7 815.8571 5711 ## 2353 N608AT 28 643.8214 18027 ## 2354 N608DA 11 949.4545 10444 ## 2355 N608JB 302 1304.7384 394031 ## 2356 N608MQ 6 600.1667 3601 ## 2357 N608QX 209 587.6938 122828 ## 2358 N608SW 2 791.5000 1583 ## 2359 N609DL 30 1177.6667 35330 ## 2360 N609MQ 8 501.0000 4008 ## 2361 N609SW 5 1068.8000 5344 ## 2362 N610DL 22 1171.2727 25768 ## 2363 N610MQ 28 501.8929 14053 ## 2364 N610WN 4 1061.0000 4244 ## 2365 N611MQ 22 462.2727 10170 ## 2366 N611QX 188 578.0160 108667 ## 2367 N611SW 6 1018.0000 6108 ## 2368 N612AA 20 1334.7500 26695 ## 2369 N612DL 57 819.9825 46739 ## 2370 N612JB 285 1268.1895 361434 ## 2371 N612MQ 29 498.6897 14462 ## 2372 N612QX 201 555.7413 111704 ## 2373 N612SW 2 724.5000 1449 ## 2374 N613AA 31 1260.5806 39078 ## 2375 N613DL 20 1090.2500 21805 ## 2376 N613JB 326 1345.5368 438645 ## 2377 N613MQ 22 496.8182 10930 ## 2378 N613SW 2 791.5000 1583 ## 2379 N614DL 20 1265.0000 25300 ## 2380 N614MQ 12 430.3333 5164 ## 2381 N614QX 184 564.3424 103839 ## 2382 N614SW 6 746.6667 4480 ## 2383 N615AA 22 1326.0455 29173 ## 2384 N615DL 24 1338.0000 32112 ## 2385 N615JB 249 1460.6627 363705 ## 2386 N615MQ 34 477.5588 16237 ## 2387 N615QX 222 555.7703 123381 ## 2388 N615SW 6 968.3333 5810 ## 2389 N616DL 61 1042.5246 63594 ## 2390 N616MQ 21 441.9048 9280 ## 2391 N616SW 5 748.6000 3743 ## 2392 N617AA 30 1369.9667 41099 ## 2393 N617DL 59 915.2373 53999 ## 2394 N617MQ 34 508.9706 17305 ## 2395 N617SW 3 818.3333 2455 ## 2396 N618AA 23 1293.2609 29745 ## 2397 N618DL 56 906.3393 50755 ## 2398 N618JB 312 1344.0288 419337 ## 2399 N618MQ 45 462.8222 20827 ## 2400 N618WN 6 854.0000 5124 ## 2401 N619AA 24 1339.2083 32141 ## 2402 N619MQ 26 423.0769 11000 ## 2403 N619SW 3 637.6667 1913 ## 2404 N620MQ 40 513.3750 20535 ## 2405 N620SW 9 836.1111 7525 ## 2406 N621AA 45 1363.2444 61346 ## 2407 N621JB 315 1398.5714 440550 ## 2408 N621MQ 25 417.2800 10432 ## 2409 N621SW 3 1075.0000 3225 ## 2410 N621VA 156 2507.9038 391233 ## 2411 N622AA 37 1263.5405 46751 ## 2412 N622AW 1 2133.0000 2133 ## 2413 N622MQ 16 548.9375 8783 ## 2414 N622SW 5 818.2000 4091 ## 2415 N622VA 128 2495.8594 319470 ## 2416 N623AA 38 1525.5263 57970 ## 2417 N623DL 48 862.0833 41380 ## 2418 N623JB 284 1337.8979 379963 ## 2419 N623MQ 25 492.0800 12302 ## 2420 N623SW 4 966.5000 3866 ## 2421 N623VA 118 2502.6271 295310 ## 2422 N624AA 29 1433.8966 41583 ## 2423 N624AG 300 2395.9967 718799 ## 2424 N624AW 1 541.0000 541 ## 2425 N624JB 276 1276.0181 352181 ## 2426 N624MQ 21 479.8571 10077 ## 2427 N624SW 5 955.0000 4775 ## 2428 N624VA 126 2502.7302 315344 ## 2429 N625AA 28 1512.9286 42362 ## 2430 N625AW 1 529.0000 529 ## 2431 N625JB 275 1463.5709 402482 ## 2432 N625MQ 20 490.1000 9802 ## 2433 N625SW 10 747.0000 7470 ## 2434 N625VA 134 2499.4478 334926 ## 2435 N62631 11 1343.7273 14781 ## 2436 N626AW 1 541.0000 541 ## 2437 N626MQ 15 395.9333 5939 ## 2438 N626SW 7 849.0000 5943 ## 2439 N626VA 152 2499.6250 379943 ## 2440 N627AW 1 541.0000 541 ## 2441 N627DL 52 820.0385 42642 ## 2442 N627JB 235 1448.6468 340432 ## 2443 N627MQ 46 430.3261 19795 ## 2444 N627SW 5 786.0000 3930 ## 2445 N627VA 120 2500.7083 300085 ## 2446 N628AA 32 1341.3125 42922 ## 2447 N628AW 2 2133.0000 4266 ## 2448 N628MQ 27 455.6667 12303 ## 2449 N628SW 5 956.2000 4781 ## 2450 N628VA 146 2499.2260 364887 ## 2451 N629JB 263 1265.5285 332834 ## 2452 N629MQ 22 440.6364 9694 ## 2453 N629SW 5 1062.8000 5314 ## 2454 N629VA 128 2503.1172 320399 ## 2455 N630AA 48 1347.6875 64689 ## 2456 N630JB 301 1331.2824 400716 ## 2457 N630MQ 23 488.8696 11244 ## 2458 N630VA 125 2503.2800 312910 ## 2459 N630WN 6 915.3333 5492 ## 2460 N631AA 45 1427.3333 64230 ## 2461 N631AW 1 2133.0000 2133 ## 2462 N631MQ 31 499.7097 15491 ## 2463 N631VA 142 2503.0704 355436 ## 2464 N632AW 1 541.0000 541 ## 2465 N632JB 272 1452.7353 395144 ## 2466 N632MQ 19 500.0526 9501 ## 2467 N632SW 7 633.5714 4435 ## 2468 N632VA 111 2513.7477 279026 ## 2469 N633AA 24 1587.0417 38089 ## 2470 N633AW 1 529.0000 529 ## 2471 N633DL 66 1061.5455 70062 ## 2472 N633JB 293 1371.9283 401975 ## 2473 N633MQ 15 557.8667 8368 ## 2474 N633SW 9 930.2222 8372 ## 2475 N633VA 130 2510.1538 326320 ## 2476 N634AA 35 1556.8286 54489 ## 2477 N634JB 281 1301.2562 365653 ## 2478 N634MQ 16 424.8125 6797 ## 2479 N634SW 2 729.5000 1459 ## 2480 N634VA 128 2497.2578 319649 ## 2481 N635AA 29 1344.6207 38994 ## 2482 N635DL 63 999.5238 62970 ## 2483 N635JB 268 1348.5597 361414 ## 2484 N635MQ 33 448.5152 14801 ## 2485 N635SW 5 1033.8000 5169 ## 2486 N635VA 145 2511.7517 364204 ## 2487 N636DL 22 1019.5455 22430 ## 2488 N636JB 268 1547.9328 414846 ## 2489 N636MQ 47 486.6383 22872 ## 2490 N636VA 145 2502.0483 362797 ## 2491 N636WN 1 1411.0000 1411 ## 2492 N637DL 26 1060.0000 27560 ## 2493 N637JB 286 1515.9371 433558 ## 2494 N637MQ 30 443.7333 13312 ## 2495 N637SW 3 818.3333 2455 ## 2496 N637VA 142 2504.2254 355600 ## 2497 N638AA 16 1165.5625 18649 ## 2498 N638DL 24 1270.8750 30501 ## 2499 N638JB 245 1396.0000 342020 ## 2500 N638MQ 46 429.5000 19757 ## 2501 N638SW 3 998.0000 2994 ## 2502 N638VA 157 2499.6497 392445 ## 2503 N639AA 27 1500.5926 40516 ## 2504 N639DL 25 1010.2400 25256 ## 2505 N639JB 286 1332.8741 381202 ## 2506 N639MQ 30 463.5333 13906 ## 2507 N639SW 5 847.2000 4236 ## 2508 N639VA 116 2497.5517 289716 ## 2509 N640AA 28 1205.4643 33753 ## 2510 N640AW 54 1510.7778 81582 ## 2511 N640DL 13 1609.2308 20920 ## 2512 N640JB 260 1362.6962 354301 ## 2513 N640MQ 21 492.1905 10336 ## 2514 N640SW 3 1051.6667 3155 ## 2515 N640VA 133 2494.5414 331774 ## 2516 N641DL 35 1077.4286 37710 ## 2517 N641JB 232 1567.3879 363634 ## 2518 N641MQ 38 490.0263 18621 ## 2519 N641SW 5 983.0000 4915 ## 2520 N641UA 1 1400.0000 1400 ## 2521 N641VA 153 2496.4183 381952 ## 2522 N642AA 31 1357.3871 42079 ## 2523 N642AW 44 1699.5455 74780 ## 2524 N642DL 60 933.9000 56034 ## 2525 N642MQ 20 517.7000 10354 ## 2526 N642VA 143 2496.0280 356932 ## 2527 N642WN 10 1017.7000 10177 ## 2528 N643DL 32 1235.1875 39526 ## 2529 N643JB 253 1344.4980 340158 ## 2530 N643MQ 27 465.6296 12572 ## 2531 N643SW 5 1028.6000 5143 ## 2532 N644DL 28 1278.4643 35797 ## 2533 N644JB 273 1358.9560 370995 ## 2534 N644MQ 49 479.9388 23517 ## 2535 N644SW 4 939.0000 3756 ## 2536 N644UA 2 1400.0000 2800 ## 2537 N645DL 24 1046.4167 25114 ## 2538 N645JB 281 1327.0819 372910 ## 2539 N645MQ 25 480.4400 12011 ## 2540 N645SW 3 829.0000 2487 ## 2541 N646DL 55 866.4364 47654 ## 2542 N646JB 260 1565.6231 407062 ## 2543 N646MQ 2 333.5000 667 ## 2544 N646SW 6 755.0000 4530 ## 2545 N646UA 2 1982.5000 3965 ## 2546 N647AW 52 1457.2308 75776 ## 2547 N647DL 34 1895.8824 64460 ## 2548 N647MQ 1 425.0000 425 ## 2549 N647SW 4 721.2500 2885 ## 2550 N647UA 1 1400.0000 1400 ## 2551 N64809 4 1903.7500 7615 ## 2552 N648AW 66 1478.3333 97570 ## 2553 N648DL 40 1224.9750 48999 ## 2554 N648JB 258 1425.7868 367853 ## 2555 N648MQ 35 441.1714 15441 ## 2556 N648SW 2 736.5000 1473 ## 2557 N648UA 1 2565.0000 2565 ## 2558 N649AW 61 1583.6230 96601 ## 2559 N649DL 30 1622.9333 48688 ## 2560 N649JB 283 1324.9611 374964 ## 2561 N649MQ 20 560.2000 11204 ## 2562 N649SW 4 895.2500 3581 ## 2563 N649UA 1 719.0000 719 ## 2564 N650AW 52 1488.5385 77404 ## 2565 N650DL 24 1631.5833 39158 ## 2566 N650MQ 45 456.2444 20531 ## 2567 N650SW 3 962.0000 2886 ## 2568 N651AW 69 1392.3043 96069 ## 2569 N651DL 23 1296.4348 29818 ## 2570 N651JB 261 1407.5287 367365 ## 2571 N651MQ 31 459.7419 14252 ## 2572 N651SW 7 1003.0000 7021 ## 2573 N651UA 1 1400.0000 1400 ## 2574 N652AW 63 1703.5397 107323 ## 2575 N652DL 34 1297.7059 44122 ## 2576 N652JB 264 1487.6098 392729 ## 2577 N652MQ 12 475.3333 5704 ## 2578 N652SW 6 849.0000 5094 ## 2579 N652UA 2 1400.0000 2800 ## 2580 N653AW 76 1524.9342 115895 ## 2581 N653JB 295 1304.8475 384930 ## 2582 N653MQ 12 438.6667 5264 ## 2583 N653SW 7 984.5714 6892 ## 2584 N653UA 1 1400.0000 1400 ## 2585 N654AW 62 1462.9355 90702 ## 2586 N654DL 40 1649.7250 65989 ## 2587 N654MQ 3 538.0000 1614 ## 2588 N654SW 5 947.6000 4738 ## 2589 N654UA 1 2227.0000 2227 ## 2590 N655AW 70 1540.6571 107846 ## 2591 N655DL 41 1412.7317 57922 ## 2592 N655JB 281 1376.9786 386931 ## 2593 N655MQ 34 434.5294 14774 ## 2594 N655UA 1 1400.0000 1400 ## 2595 N655WN 4 1133.7500 4535 ## 2596 N656AW 72 1734.8333 124908 ## 2597 N656JB 275 1352.6509 371979 ## 2598 N656MQ 35 486.0000 17010 ## 2599 N656SW 3 953.3333 2860 ## 2600 N656UA 5 1400.0000 7000 ## 2601 N657AW 71 1616.2113 114751 ## 2602 N657JB 285 1285.8596 366470 ## 2603 N657MQ 39 505.3077 19707 ## 2604 N657SW 2 810.0000 1620 ## 2605 N657UA 1 1400.0000 1400 ## 2606 N658AW 66 1553.4848 102530 ## 2607 N658DL 39 1013.2821 39518 ## 2608 N658JB 286 1485.3706 424816 ## 2609 N658MQ 22 473.8636 10425 ## 2610 N658SW 5 790.2000 3951 ## 2611 N658UA 3 1400.0000 4200 ## 2612 N659AW 57 1459.8070 83209 ## 2613 N659DL 78 910.7564 71039 ## 2614 N659JB 276 1291.2500 356385 ## 2615 N659MQ 35 446.9143 15642 ## 2616 N659SW 6 861.3333 5168 ## 2617 N659UA 3 1400.0000 4200 ## 2618 N66051 34 3634.9412 123588 ## 2619 N66056 30 3243.7333 97312 ## 2620 N66057 39 3746.1282 146099 ## 2621 N660AW 58 1499.1379 86950 ## 2622 N660DL 54 1078.0000 58212 ## 2623 N660MQ 41 529.9024 21726 ## 2624 N660SW 1 748.0000 748 ## 2625 N660UA 3 1561.3333 4684 ## 2626 N661AW 50 1461.8000 73090 ## 2627 N661DN 47 1029.6170 48392 ## 2628 N661JB 286 1370.1399 391860 ## 2629 N661MQ 19 442.4737 8407 ## 2630 N661UA 1 1400.0000 1400 ## 2631 N662AW 67 1537.4179 103007 ## 2632 N662DN 56 937.3571 52492 ## 2633 N662JB 256 1335.7578 341954 ## 2634 N662MQ 7 465.7143 3260 ## 2635 N662SW 5 1030.6000 5153 ## 2636 N663AW 67 1465.8955 98215 ## 2637 N663DN 75 869.7333 65230 ## 2638 N663JB 271 1338.2399 362663 ## 2639 N663MQ 26 471.9231 12270 ## 2640 N663SW 3 1002.6667 3008 ## 2641 N663UA 4 1691.2500 6765 ## 2642 N664AW 51 1538.1765 78447 ## 2643 N664DN 75 936.2933 70222 ## 2644 N664MQ 8 360.3750 2883 ## 2645 N664UA 20 1458.2500 29165 ## 2646 N665AW 49 1548.2653 75865 ## 2647 N665DN 78 916.8205 71512 ## 2648 N665JB 244 1247.3197 304346 ## 2649 N665MQ 6 481.5000 2889 ## 2650 N665UA 11 1400.0000 15400 ## 2651 N665WN 7 1080.0000 7560 ## 2652 N666DN 62 1035.5806 64206 ## 2653 N666UA 11 1400.0000 15400 ## 2654 N667AW 59 1565.8814 92387 ## 2655 N667DN 80 979.2500 78340 ## 2656 N667MQ 21 432.0000 9072 ## 2657 N667UA 25 1408.2000 35205 ## 2658 N66803 12 1971.6667 23660 ## 2659 N66808 16 2017.8125 32285 ## 2660 N668AW 66 1552.9394 102494 ## 2661 N668DN 49 1027.5918 50352 ## 2662 N668MQ 24 404.2083 9701 ## 2663 N668UA 18 1411.3889 25405 ## 2664 N669AW 52 1520.3846 79060 ## 2665 N669DN 69 993.8261 68574 ## 2666 N669MQ 16 511.6250 8186 ## 2667 N669SW 1 748.0000 748 ## 2668 N669UA 17 1400.0000 23800 ## 2669 N6700 30 1251.3667 37541 ## 2670 N6701 44 1562.3182 68742 ## 2671 N6702 33 1528.9697 50456 ## 2672 N6703D 38 1410.9474 53616 ## 2673 N6704Z 28 1243.7143 34824 ## 2674 N67052 24 3427.0417 82249 ## 2675 N67058 36 3329.2500 119853 ## 2676 N6705Y 29 1390.3448 40320 ## 2677 N6706Q 19 1621.1579 30802 ## 2678 N6707A 37 1624.4595 60105 ## 2679 N6708D 36 1336.6667 48120 ## 2680 N6709 27 1305.6667 35253 ## 2681 N670DN 61 1087.9016 66362 ## 2682 N670MQ 9 413.0000 3717 ## 2683 N670SW 2 1411.0000 2822 ## 2684 N670UA 27 1536.4815 41485 ## 2685 N670US 1 760.0000 760 ## 2686 N6710E 34 1473.0588 50084 ## 2687 N6711M 31 1383.7742 42897 ## 2688 N6712B 42 1436.1429 60318 ## 2689 N67134 94 1595.3191 149960 ## 2690 N6713Y 22 1058.3636 23284 ## 2691 N6714Q 21 1256.9524 26396 ## 2692 N6715C 27 1506.1481 40666 ## 2693 N6716C 25 1453.7600 36344 ## 2694 N67171 33 1377.9091 45471 ## 2695 N671DN 60 980.9333 58856 ## 2696 N671MQ 31 485.1290 15039 ## 2697 N671UA 19 1400.0000 26600 ## 2698 N672AW 59 1647.1017 97179 ## 2699 N672DL 64 990.9062 63418 ## 2700 N672MQ 22 430.4091 9469 ## 2701 N672UA 17 1400.0000 23800 ## 2702 N673AW 73 1477.2192 107837 ## 2703 N673DL 50 873.4800 43674 ## 2704 N673MQ 20 561.2500 11225 ## 2705 N673UA 16 1472.8125 23565 ## 2706 N674DL 78 1024.8205 79936 ## 2707 N674MQ 3 514.6667 1544 ## 2708 N674UA 19 1400.0000 26600 ## 2709 N675AW 60 1494.3333 89660 ## 2710 N675DL 62 1015.2581 62946 ## 2711 N675MC 5 642.8000 3214 ## 2712 N675MQ 23 457.8261 10530 ## 2713 N675UA 25 1414.3200 35358 ## 2714 N676AW 78 1602.5385 124998 ## 2715 N676CA 35 641.9143 22467 ## 2716 N676DL 52 987.9231 51372 ## 2717 N676MQ 12 348.7500 4185 ## 2718 N676UA 12 1497.0833 17965 ## 2719 N677AW 69 1482.9710 102325 ## 2720 N677MQ 29 476.3793 13815 ## 2721 N677UA 19 1400.0000 26600 ## 2722 N678AW 58 1499.8276 86990 ## 2723 N678CA 34 635.0588 21592 ## 2724 N678DL 52 981.4615 51036 ## 2725 N678MQ 14 504.7857 7067 ## 2726 N679AW 40 1777.2000 71088 ## 2727 N679DA 67 982.8657 65852 ## 2728 N679MQ 36 457.0000 16452 ## 2729 N68061 22 3829.3182 84245 ## 2730 N680AW 55 1405.2909 77291 ## 2731 N680DA 72 975.5556 70240 ## 2732 N680MQ 31 439.1613 13614 ## 2733 N68159 5 1821.6000 9108 ## 2734 N68160 8 1679.5000 13436 ## 2735 N681DA 32 915.3125 29290 ## 2736 N681MQ 27 498.9259 13471 ## 2737 N682DA 18 1107.1667 19929 ## 2738 N682MQ 31 480.8710 14907 ## 2739 N683BR 3 437.3333 1312 ## 2740 N683DA 15 998.6667 14980 ## 2741 N683MQ 30 455.8667 13676 ## 2742 N68452 99 1561.3434 154573 ## 2743 N68453 104 1522.2019 158309 ## 2744 N684DA 36 1731.0556 62318 ## 2745 N684MQ 20 488.7000 9774 ## 2746 N684WN 7 1064.5714 7452 ## 2747 N685DA 37 1580.5405 58480 ## 2748 N685MQ 24 493.1667 11836 ## 2749 N685SW 5 1062.8000 5314 ## 2750 N686DA 45 922.6667 41520 ## 2751 N686MQ 16 491.8125 7869 ## 2752 N687DL 81 873.9877 70793 ## 2753 N687MQ 32 429.2812 13737 ## 2754 N687SW 5 785.6000 3928 ## 2755 N68801 18 1714.7222 30865 ## 2756 N68802 13 1977.0000 25701 ## 2757 N68805 15 1669.6667 25045 ## 2758 N68807 6 1971.6667 11830 ## 2759 N688DL 67 1005.1343 67344 ## 2760 N688MQ 31 441.5806 13689 ## 2761 N689DL 64 1014.1562 64906 ## 2762 N689MQ 22 568.0455 12497 ## 2763 N69059 35 3619.0000 126665 ## 2764 N69063 32 4550.5625 145618 ## 2765 N690DL 66 909.0303 59996 ## 2766 N690MQ 25 401.2400 10031 ## 2767 N69154 12 1643.7500 19725 ## 2768 N691CA 29 576.5172 16719 ## 2769 N691MQ 15 489.6000 7344 ## 2770 N691WN 8 1125.5000 9004 ## 2771 N692DL 45 972.0444 43742 ## 2772 N692MQ 21 443.5714 9315 ## 2773 N693CA 1 1008.0000 1008 ## 2774 N693DL 38 1239.4474 47099 ## 2775 N693MQ 18 445.3889 8017 ## 2776 N693SW 2 1141.5000 2283 ## 2777 N694DL 38 1639.6842 62308 ## 2778 N694MQ 39 468.4359 18269 ## 2779 N694SW 2 1141.5000 2283 ## 2780 N695CA 42 685.0238 28771 ## 2781 N695DL 46 1498.3913 68926 ## 2782 N695MQ 31 434.7742 13478 ## 2783 N696DL 31 1387.9355 43026 ## 2784 N696MQ 14 517.0000 7238 ## 2785 N697DL 36 973.6667 35052 ## 2786 N697MQ 5 496.0000 2480 ## 2787 N697SW 8 987.8750 7903 ## 2788 N69804 27 1579.7778 42654 ## 2789 N69806 17 1652.1765 28087 ## 2790 N698DL 12 1462.0000 17544 ## 2791 N698MQ 54 471.2963 25450 ## 2792 N699DL 25 1121.1600 28029 ## 2793 N699MQ 22 357.0909 7856 ## 2794 N6EAMQ 348 675.2672 234993 ## 2795 N700GS 42 963.6429 40473 ## 2796 N700UW 52 388.8654 20221 ## 2797 N701GS 23 831.7826 19131 ## 2798 N701SK 1 419.0000 419 ## 2799 N701UW 60 335.5833 20135 ## 2800 N702SK 1 419.0000 419 ## 2801 N702TW 195 2281.3026 444854 ## 2802 N702UW 100 314.0200 31402 ## 2803 N703JB 277 1467.9386 406619 ## 2804 N703SW 29 1037.7586 30095 ## 2805 N703TW 195 2330.5692 454461 ## 2806 N703UW 59 340.5593 20093 ## 2807 N704SW 28 988.8929 27689 ## 2808 N704US 72 383.2361 27593 ## 2809 N704X 202 2340.2426 472729 ## 2810 N705JB 290 1498.5207 434571 ## 2811 N705SK 1 419.0000 419 ## 2812 N705SW 22 880.9545 19381 ## 2813 N705TW 293 2416.3754 707998 ## 2814 N705UW 64 336.4844 21535 ## 2815 N706JB 288 1300.4931 374542 ## 2816 N706SW 25 1013.2800 25332 ## 2817 N706TW 220 2404.6091 529014 ## 2818 N707EV 114 569.8860 64967 ## 2819 N707SA 24 1067.7500 25626 ## 2820 N707TW 235 2398.5745 563665 ## 2821 N708EV 220 588.2773 129421 ## 2822 N708JB 246 1389.9959 341939 ## 2823 N708SW 16 912.8125 14605 ## 2824 N708UW 86 352.5116 30316 ## 2825 N709EV 225 570.6311 128392 ## 2826 N709JB 264 1330.6629 351295 ## 2827 N709SW 28 976.1429 27332 ## 2828 N709TW 223 2384.0090 531634 ## 2829 N709UW 60 321.8000 19308 ## 2830 N710EV 214 593.7290 127058 ## 2831 N710SK 1 419.0000 419 ## 2832 N710SW 29 910.3448 26400 ## 2833 N710TW 220 2370.0909 521420 ## 2834 N710UW 54 396.1111 21390 ## 2835 N711HK 21 1153.0000 24213 ## 2836 N711MQ 486 541.9733 263399 ## 2837 N711UW 66 360.9091 23820 ## 2838 N711ZX 291 2399.2234 698174 ## 2839 N712EV 210 555.0333 116557 ## 2840 N712JB 251 1407.4502 353270 ## 2841 N712SW 26 1012.3077 26320 ## 2842 N712TW 196 2356.7296 461919 ## 2843 N712US 93 306.8280 28535 ## 2844 N713EV 246 549.2073 135105 ## 2845 N713MQ 483 549.4762 265397 ## 2846 N713SW 21 1060.7143 22275 ## 2847 N713TW 297 2410.7677 715998 ## 2848 N713UW 59 362.7288 21401 ## 2849 N71411 80 1483.4750 118678 ## 2850 N714CB 20 973.1500 19463 ## 2851 N714US 82 317.0610 25999 ## 2852 N715JB 249 1410.6185 351244 ## 2853 N715SW 30 1095.2667 32858 ## 2854 N715UW 84 307.5833 25837 ## 2855 N716EV 212 561.9434 119132 ## 2856 N716SW 30 923.1000 27693 ## 2857 N716UW 75 395.5067 29663 ## 2858 N717EV 231 538.5238 124399 ## 2859 N717JL 34 643.2059 21869 ## 2860 N717MQ 241 547.8091 132022 ## 2861 N717SA 21 1069.0952 22451 ## 2862 N717TW 272 2412.2390 656129 ## 2863 N717UW 79 297.4051 23495 ## 2864 N718EV 196 554.1531 108614 ## 2865 N718SW 23 939.0435 21598 ## 2866 N718TW 328 2363.9665 775381 ## 2867 N719EV 171 579.2573 99053 ## 2868 N719MQ 182 523.7912 95330 ## 2869 N719SW 31 998.6129 30957 ## 2870 N720EV 177 549.4520 97253 ## 2871 N720MQ 331 556.4048 184170 ## 2872 N720WN 31 940.7742 29164 ## 2873 N721MQ 328 545.9665 179077 ## 2874 N721TW 318 2377.4528 756030 ## 2875 N721UW 65 326.3692 21214 ## 2876 N722EV 160 566.1125 90578 ## 2877 N722MQ 513 545.8908 280042 ## 2878 N722TW 314 2433.6847 764177 ## 2879 N722US 76 345.0000 26220 ## 2880 N723EV 183 560.9016 102645 ## 2881 N723MQ 507 537.6272 272577 ## 2882 N723SW 29 1090.1724 31615 ## 2883 N723TW 289 2360.2526 682113 ## 2884 N723UW 65 360.0308 23402 ## 2885 N72405 89 1428.5281 127139 ## 2886 N724EV 204 578.9265 118101 ## 2887 N724MQ 210 663.7619 139390 ## 2888 N724SW 27 1002.4074 27065 ## 2889 N724UW 63 341.1746 21494 ## 2890 N725MQ 575 558.6052 321198 ## 2891 N725SW 21 957.0476 20098 ## 2892 N725UW 63 357.8889 22547 ## 2893 N726SK 1 419.0000 419 ## 2894 N726SW 28 909.2143 25458 ## 2895 N727SW 35 961.1143 33639 ## 2896 N727TW 275 2413.7236 663774 ## 2897 N728SK 1 419.0000 419 ## 2898 N728SW 27 884.9630 23894 ## 2899 N729JB 284 1327.5951 377037 ## 2900 N729SW 27 941.6667 25425 ## 2901 N730EV 223 612.3587 136556 ## 2902 N730MQ 178 539.2640 95989 ## 2903 N730SW 25 1166.3600 29159 ## 2904 N730US 91 313.4615 28525 ## 2905 N73152 12 1663.5000 19962 ## 2906 N731SA 25 1213.2800 30332 ## 2907 N73251 107 1405.7944 150420 ## 2908 N73256 105 1309.8476 137534 ## 2909 N73259 115 1556.7565 179027 ## 2910 N73270 104 1495.9904 155583 ## 2911 N73275 114 1409.4649 160679 ## 2912 N73276 114 1266.8509 144421 ## 2913 N73278 102 1465.1078 149441 ## 2914 N73283 110 1402.5091 154276 ## 2915 N73291 142 1382.5704 196325 ## 2916 N73299 95 1532.6947 145606 ## 2917 N732SW 27 1172.4444 31656 ## 2918 N732US 86 312.2674 26855 ## 2919 N733SA 24 1044.0417 25057 ## 2920 N733UW 55 308.8182 16985 ## 2921 N73406 81 1397.9506 113234 ## 2922 N73445 122 1532.8361 187006 ## 2923 N734MQ 128 526.3125 67368 ## 2924 N734SA 29 1116.8276 32388 ## 2925 N735MQ 396 552.2727 218700 ## 2926 N735SA 29 1092.6552 31687 ## 2927 N736MQ 169 513.5444 86789 ## 2928 N736SA 29 1107.9310 32130 ## 2929 N737JW 30 1087.3000 32619 ## 2930 N737MQ 165 521.6667 86075 ## 2931 N737US 85 321.0471 27289 ## 2932 N73860 5 1981.4000 9907 ## 2933 N738CB 28 924.9286 25898 ## 2934 N738EV 213 552.9108 117770 ## 2935 N738MQ 333 527.2462 175573 ## 2936 N738US 65 332.3231 21601 ## 2937 N739GB 21 923.1429 19386 ## 2938 N739MQ 149 535.2550 79753 ## 2939 N740EV 233 580.4721 135250 ## 2940 N740SK 1 419.0000 419 ## 2941 N740SW 26 976.7692 25396 ## 2942 N740UW 58 335.7586 19474 ## 2943 N741EV 211 569.3460 120132 ## 2944 N741SA 32 989.2500 31656 ## 2945 N741UW 66 324.4697 21415 ## 2946 N742PS 177 288.3842 51044 ## 2947 N742SW 20 1144.4500 22889 ## 2948 N743SW 26 959.0769 24936 ## 2949 N744EV 189 580.3333 109683 ## 2950 N744P 154 281.1494 43297 ## 2951 N744SW 28 1038.5714 29080 ## 2952 N745SW 25 940.6800 23517 ## 2953 N745VJ 185 273.3730 50574 ## 2954 N746JB 318 1364.6855 433970 ## 2955 N746SK 1 229.0000 229 ## 2956 N746SW 25 1111.8800 27797 ## 2957 N746UW 133 291.5714 38779 ## 2958 N747SA 32 987.2500 31592 ## 2959 N747UW 177 269.8814 47769 ## 2960 N74856 36 1998.3889 71942 ## 2961 N748EV 224 556.9107 124748 ## 2962 N748SW 22 980.6818 21575 ## 2963 N748UW 181 272.6575 49351 ## 2964 N749SW 19 901.1579 17122 ## 2965 N749US 135 276.6296 37345 ## 2966 N750AT 1 2475.0000 2475 ## 2967 N750EV 233 564.0944 131434 ## 2968 N750SA 28 1137.5357 31851 ## 2969 N750UW 146 289.3493 42245 ## 2970 N751EV 208 583.1875 121303 ## 2971 N751SW 32 1021.1562 32677 ## 2972 N751UW 152 272.4276 41409 ## 2973 N752EV 215 527.3721 113385 ## 2974 N752SW 24 854.0833 20498 ## 2975 N752US 127 277.1890 35203 ## 2976 N753EV 253 590.2846 149342 ## 2977 N753SW 25 929.0800 23227 ## 2978 N753US 118 281.2119 33183 ## 2979 N75410 74 1581.8649 117058 ## 2980 N75425 81 1689.4815 136848 ## 2981 N75426 83 1648.4458 136821 ## 2982 N75428 107 1637.0187 175161 ## 2983 N75429 92 1633.1413 150249 ## 2984 N75432 102 1795.7353 183165 ## 2985 N75433 110 1762.0727 193828 ## 2986 N75435 89 1760.4831 156683 ## 2987 N75436 126 1742.9365 219610 ## 2988 N754EV 235 555.9660 130652 ## 2989 N754SW 35 1096.4286 38375 ## 2990 N754UW 134 267.4552 35839 ## 2991 N755EV 195 575.5487 112232 ## 2992 N755SA 32 915.1250 29284 ## 2993 N755US 139 297.3957 41338 ## 2994 N756SA 32 1001.9375 32062 ## 2995 N756US 139 264.2014 36724 ## 2996 N757AT 1 2475.0000 2475 ## 2997 N757LV 23 949.3043 21834 ## 2998 N757UW 141 263.0780 37094 ## 2999 N75851 38 2163.5526 82215 ## 3000 N75853 41 1999.8780 81995 ## 3001 N75854 32 1826.4375 58446 ## 3002 N75858 43 1975.1628 84932 ## 3003 N75861 13 1544.6923 20081 ## 3004 N758EV 185 582.9081 107838 ## 3005 N758SW 40 936.2500 37450 ## 3006 N758US 128 299.5859 38347 ## 3007 N759EV 261 545.6590 142417 ## 3008 N759GS 29 1043.3793 30258 ## 3009 N76054 28 3591.7857 100570 ## 3010 N76055 32 3429.0625 109730 ## 3011 N76062 25 3403.6000 85090 ## 3012 N76064 43 4450.0000 191350 ## 3013 N76065 58 4319.0862 250507 ## 3014 N760EV 187 578.1711 108118 ## 3015 N760JB 301 1328.2060 399790 ## 3016 N760SK 1 419.0000 419 ## 3017 N760SW 28 1009.3214 28261 ## 3018 N760US 149 272.4698 40598 ## 3019 N76153 12 1751.3333 21016 ## 3020 N761ND 133 569.4962 75743 ## 3021 N761RR 36 1006.4722 36233 ## 3022 N76254 129 1459.4109 188264 ## 3023 N76265 119 1312.6807 156209 ## 3024 N76269 135 1392.5926 188000 ## 3025 N76288 110 1440.6909 158476 ## 3026 N762NC 15 660.0000 9900 ## 3027 N762SK 1 419.0000 419 ## 3028 N762SW 39 1037.8718 40477 ## 3029 N762US 201 279.0995 56099 ## 3030 N763JB 268 1591.4403 426506 ## 3031 N763SW 27 1021.4444 27579 ## 3032 N763US 118 282.5932 33346 ## 3033 N764NC 11 628.7273 6916 ## 3034 N764SW 26 981.9615 25531 ## 3035 N764US 133 292.4211 38892 ## 3036 N76502 98 1553.8061 152273 ## 3037 N76503 118 1461.5508 172463 ## 3038 N76504 129 1395.3488 180000 ## 3039 N76505 107 1453.0000 155471 ## 3040 N76508 121 1392.3636 168476 ## 3041 N76514 97 1446.6082 140321 ## 3042 N76515 113 1422.0531 160692 ## 3043 N76516 125 1481.7200 185215 ## 3044 N76517 109 1421.8532 154982 ## 3045 N76519 120 1605.0750 192609 ## 3046 N76522 122 1491.7459 181993 ## 3047 N76523 115 1445.8870 166277 ## 3048 N76526 115 1461.6957 168095 ## 3049 N76528 121 1514.5620 183262 ## 3050 N76529 125 1496.3920 187049 ## 3051 N765SW 33 939.0909 30990 ## 3052 N765US 132 290.2727 38316 ## 3053 N766JB 282 1415.0284 399038 ## 3054 N766NC 14 617.0000 8638 ## 3055 N766SK 1 419.0000 419 ## 3056 N766SW 34 1054.0882 35839 ## 3057 N766US 140 297.8143 41694 ## 3058 N767NC 22 722.5455 15896 ## 3059 N767SW 28 1049.8929 29397 ## 3060 N767UW 139 280.5108 38991 ## 3061 N768JB 276 1593.0906 439693 ## 3062 N768SK 1 419.0000 419 ## 3063 N768SW 32 842.2812 26953 ## 3064 N768US 152 288.2105 43808 ## 3065 N769SW 30 1060.7333 31822 ## 3066 N769US 163 267.4724 43598 ## 3067 N77012 1 1400.0000 1400 ## 3068 N7702A 38 993.3684 37748 ## 3069 N7704B 35 900.2571 31509 ## 3070 N77066 45 4669.7111 210137 ## 3071 N770NC 6 746.0000 4476 ## 3072 N770SA 28 963.1071 26967 ## 3073 N770UW 168 283.5298 47633 ## 3074 N7713A 1 764.0000 764 ## 3075 N7714B 26 1058.5000 27521 ## 3076 N7715E 1 711.0000 711 ## 3077 N771SA 26 994.6154 25860 ## 3078 N7724A 12 931.5833 11179 ## 3079 N77258 111 1401.9910 155621 ## 3080 N77261 103 1341.2330 138147 ## 3081 N7726A 30 1011.6000 30348 ## 3082 N77295 126 1451.1508 182845 ## 3083 N77296 122 1389.2377 169487 ## 3084 N772SK 1 419.0000 419 ## 3085 N772SW 23 1077.7391 24788 ## 3086 N7730A 29 942.9655 27346 ## 3087 N7732A 34 1090.4412 37075 ## 3088 N7734H 38 1005.4474 38207 ## 3089 N7735A 30 1077.8000 32334 ## 3090 N7738A 24 999.4167 23986 ## 3091 N7739A 41 888.1220 36413 ## 3092 N773NC 11 676.9091 7446 ## 3093 N773SA 24 835.2917 20047 ## 3094 N7740A 31 1057.9032 32795 ## 3095 N7741C 18 1092.0556 19657 ## 3096 N77430 112 1607.7589 180069 ## 3097 N77431 100 1640.3000 164030 ## 3098 N7744A 5 1076.4000 5382 ## 3099 N7746C 18 1025.7778 18464 ## 3100 N774NC 6 531.0000 3186 ## 3101 N774SW 27 1028.0000 27756 ## 3102 N77510 88 1538.8977 135423 ## 3103 N77518 90 1529.1667 137625 ## 3104 N77520 99 1372.6667 135894 ## 3105 N77525 108 1386.0370 149692 ## 3106 N77530 126 1438.0556 181195 ## 3107 N775JB 280 1619.3321 453413 ## 3108 N775NC 6 660.0000 3960 ## 3109 N775SW 28 899.1429 25176 ## 3110 N776SK 1 419.0000 419 ## 3111 N776WN 38 936.5526 35589 ## 3112 N777NC 10 591.2000 5912 ## 3113 N777QC 23 998.9130 22975 ## 3114 N777UA 1 2586.0000 2586 ## 3115 N77865 8 2246.0000 17968 ## 3116 N77867 8 1454.7500 11638 ## 3117 N77871 13 1755.0000 22815 ## 3118 N778SK 1 419.0000 419 ## 3119 N778SW 25 1113.1600 27829 ## 3120 N779JB 264 1504.4280 397169 ## 3121 N779NC 14 672.2857 9412 ## 3122 N779SW 25 1176.3600 29409 ## 3123 N78003 1 1400.0000 1400 ## 3124 N78013 1 1400.0000 1400 ## 3125 N78060 26 3359.8846 87357 ## 3126 N780NC 14 653.8571 9154 ## 3127 N780SK 2 419.0000 838 ## 3128 N780SW 21 1089.5238 22880 ## 3129 N7811F 17 1117.1176 18991 ## 3130 N7812G 10 1103.6000 11036 ## 3131 N781WN 30 1033.5667 31007 ## 3132 N78285 140 1415.4857 198168 ## 3133 N782NC 17 670.1176 11392 ## 3134 N782SA 36 1081.2222 38924 ## 3135 N783SW 30 798.1000 23943 ## 3136 N78438 104 1739.4808 180906 ## 3137 N78448 112 1590.9464 178186 ## 3138 N784JB 297 1458.5354 433185 ## 3139 N784NC 20 655.7000 13114 ## 3140 N784SW 41 1037.0244 42518 ## 3141 N78501 125 1423.0000 177875 ## 3142 N78506 112 1456.1161 163085 ## 3143 N78509 116 1386.8103 160870 ## 3144 N78511 104 1476.1346 153518 ## 3145 N78524 102 1394.5686 142246 ## 3146 N785SK 1 419.0000 419 ## 3147 N785SW 34 1045.4706 35546 ## 3148 N786NC 12 660.0000 7920 ## 3149 N786SW 33 1001.0606 33035 ## 3150 N787NC 12 724.5000 8694 ## 3151 N787SA 20 955.3000 19106 ## 3152 N787UA 1 2586.0000 2586 ## 3153 N78866 9 1869.6667 16827 ## 3154 N788SA 25 1087.1200 27178 ## 3155 N789JB 332 1588.0060 527218 ## 3156 N789SK 3 419.0000 1257 ## 3157 N789SW 30 967.3667 29021 ## 3158 N790SK 1 419.0000 419 ## 3159 N790SW 34 988.7647 33618 ## 3160 N791SW 30 1028.7000 30861 ## 3161 N79279 120 1583.1583 189979 ## 3162 N792SW 28 859.7143 24072 ## 3163 N793JB 283 1528.5972 432593 ## 3164 N793SA 34 1014.5000 34493 ## 3165 N79402 87 1348.2759 117300 ## 3166 N794JB 239 1644.8619 393122 ## 3167 N794SK 1 419.0000 419 ## 3168 N794SW 22 856.0000 18832 ## 3169 N79521 110 1394.9545 153445 ## 3170 N795SK 1 419.0000 419 ## 3171 N795SW 35 935.8571 32755 ## 3172 N796JB 297 1598.6768 474807 ## 3173 N796SW 36 950.2222 34208 ## 3174 N797MX 29 1080.4483 31333 ## 3175 N797SK 1 419.0000 419 ## 3176 N798SW 19 925.6842 17588 ## 3177 N799SW 22 960.5909 21133 ## 3178 N7AAAA 1 2586.0000 2586 ## 3179 N7ACAA 1 1089.0000 1089 ## 3180 N7AEAA 1 1089.0000 1089 ## 3181 N7ALAA 1 1089.0000 1089 ## 3182 N7ASAA 1 1089.0000 1089 ## 3183 N7AXAA 1 1089.0000 1089 ## 3184 N7AYAA 1 1089.0000 1089 ## 3185 N7BAAA 3 1359.3333 4078 ## 3186 N7BFAA 1 1089.0000 1089 ## 3187 N7BGAA 2 1240.0000 2480 ## 3188 N7BKAA 1 1391.0000 1391 ## 3189 N7BMAA 1 1391.0000 1391 ## 3190 N7BVAA 1 1089.0000 1089 ## 3191 N7CAAA 1 1089.0000 1089 ## 3192 N800AY 52 334.7885 17409 ## 3193 N800MQ 63 302.5397 19060 ## 3194 N801AW 1 2133.0000 2133 ## 3195 N801AY 48 335.5000 16104 ## 3196 N801UA 113 1194.2655 134952 ## 3197 N802AW 1 2133.0000 2133 ## 3198 N802MQ 74 419.7027 31058 ## 3199 N802UA 120 1141.4583 136975 ## 3200 N803MQ 58 437.9483 25401 ## 3201 N803SK 1 1008.0000 1008 ## 3202 N803UA 129 1057.3178 136394 ## 3203 N804AW 3 2133.0000 6399 ## 3204 N804JB 219 1424.6210 311992 ## 3205 N804MQ 205 356.7561 73135 ## 3206 N804UA 110 1187.7818 130656 ## 3207 N805AY 53 342.5472 18155 ## 3208 N805JB 240 1566.1708 375881 ## 3209 N805MQ 102 426.4314 43496 ## 3210 N805UA 119 1186.3277 141173 ## 3211 N806JB 258 1709.0814 440943 ## 3212 N806MQ 148 386.1757 57154 ## 3213 N806UA 116 1109.8362 128741 ## 3214 N807AW 2 2133.0000 4266 ## 3215 N807JB 286 1683.3427 481436 ## 3216 N807MQ 164 414.3232 67949 ## 3217 N807UA 107 1250.8598 133842 ## 3218 N808MQ 60 400.1167 24007 ## 3219 N808UA 117 1226.3419 143482 ## 3220 N809AW 1 2133.0000 2133 ## 3221 N809JB 254 1694.7520 430467 ## 3222 N809NW 1 2422.0000 2422 ## 3223 N809UA 122 1181.8197 144182 ## 3224 N810AW 1 2133.0000 2133 ## 3225 N810MQ 64 365.7188 23406 ## 3226 N810UA 132 1091.8485 144124 ## 3227 N811MQ 81 448.6543 36341 ## 3228 N811UA 127 1052.1575 133624 ## 3229 N812AW 1 2133.0000 2133 ## 3230 N812AY 48 333.0000 15984 ## 3231 N812MQ 121 362.2397 43831 ## 3232 N812UA 115 1290.5565 148414 ## 3233 N813AY 37 395.4324 14631 ## 3234 N813MQ 177 402.5254 71247 ## 3235 N813SK 2 1008.0000 2016 ## 3236 N813UA 117 1177.3675 137752 ## 3237 N81449 112 1618.1429 181232 ## 3238 N814AW 2 1331.0000 2662 ## 3239 N814MQ 63 395.4603 24914 ## 3240 N814UA 87 1235.0460 107449 ## 3241 N815AW 1 2133.0000 2133 ## 3242 N815MQ 117 355.4444 41587 ## 3243 N815UA 134 1160.2985 155480 ## 3244 N816MQ 130 417.9308 54331 ## 3245 N816UA 110 1064.3182 117075 ## 3246 N817AW 2 2133.0000 4266 ## 3247 N817MQ 166 370.6265 61524 ## 3248 N817UA 125 1183.7280 147966 ## 3249 N818MQ 76 473.0921 35955 ## 3250 N818UA 139 1160.1223 161257 ## 3251 N819AW 1 2133.0000 2133 ## 3252 N819AY 64 332.9844 21311 ## 3253 N819MQ 8 343.0000 2744 ## 3254 N819UA 112 1084.9732 121517 ## 3255 N820AS 217 228.5392 49593 ## 3256 N820AW 1 2133.0000 2133 ## 3257 N820AY 37 395.0270 14616 ## 3258 N820MQ 45 491.4667 22116 ## 3259 N820UA 133 1166.0301 155082 ## 3260 N821AW 3 1598.3333 4795 ## 3261 N821AY 40 402.1750 16087 ## 3262 N821JB 234 1821.8205 426306 ## 3263 N821MQ 99 394.0000 39006 ## 3264 N821UA 120 1177.5583 141307 ## 3265 N822MQ 84 390.4881 32801 ## 3266 N822UA 132 1186.5303 156622 ## 3267 N823AY 30 306.8333 9205 ## 3268 N823MQ 38 315.7368 11998 ## 3269 N823UA 135 1126.9778 152142 ## 3270 N824AS 1 296.0000 296 ## 3271 N824AW 2 1337.0000 2674 ## 3272 N824AY 45 390.6889 17581 ## 3273 N824MQ 76 417.0658 31697 ## 3274 N824UA 123 1146.1463 140976 ## 3275 N825AS 197 228.5228 45019 ## 3276 N825AW 2 2133.0000 4266 ## 3277 N825AY 38 403.3158 15326 ## 3278 N825MH 2 760.0000 1520 ## 3279 N825MQ 39 428.6410 16717 ## 3280 N825UA 110 1219.9818 134198 ## 3281 N826AS 194 228.4381 44317 ## 3282 N826AW 1 2133.0000 2133 ## 3283 N826AY 52 378.1731 19665 ## 3284 N826MH 2 760.0000 1520 ## 3285 N826MQ 23 376.4348 8658 ## 3286 N826UA 120 1095.1250 131415 ## 3287 N827AS 200 228.4750 45695 ## 3288 N827AW 2 2133.0000 4266 ## 3289 N827AY 14 378.4286 5298 ## 3290 N827JB 125 1903.2240 237903 ## 3291 N827MH 1 760.0000 760 ## 3292 N827MQ 121 450.1157 54464 ## 3293 N827UA 117 1149.8291 134530 ## 3294 N828AS 208 228.4615 47520 ## 3295 N828AW 2 2133.0000 4266 ## 3296 N828JB 58 1722.7241 99918 ## 3297 N828MH 2 1591.0000 3182 ## 3298 N828MQ 94 411.2872 38661 ## 3299 N828UA 105 1111.0095 116656 ## 3300 N829AS 230 228.4739 52549 ## 3301 N829AY 32 353.9062 11325 ## 3302 N829MH 1 760.0000 760 ## 3303 N829MQ 55 396.8364 21826 ## 3304 N829UA 109 1132.1743 123407 ## 3305 N8301J 13 787.6923 10240 ## 3306 N8302F 10 830.8000 8308 ## 3307 N8303R 10 757.6000 7576 ## 3308 N8305E 20 729.8000 14596 ## 3309 N8306H 13 819.9231 10659 ## 3310 N8307K 12 738.5833 8863 ## 3311 N8308K 15 736.7333 11051 ## 3312 N8309C 7 725.0000 5075 ## 3313 N830AS 184 228.5000 42044 ## 3314 N830AW 1 2133.0000 2133 ## 3315 N830AY 55 376.7273 20720 ## 3316 N830MQ 68 344.8971 23453 ## 3317 N830UA 151 1138.8742 171970 ## 3318 N8310C 16 747.0000 11952 ## 3319 N8311Q 14 736.6429 10313 ## 3320 N8312C 15 768.4667 11527 ## 3321 N8313F 13 842.8462 10957 ## 3322 N8314L 11 808.4545 8893 ## 3323 N8315C 10 741.3000 7413 ## 3324 N8316H 14 774.3571 10841 ## 3325 N8317M 13 900.3077 11704 ## 3326 N8318F 19 768.5789 14603 ## 3327 N8319F 9 743.1111 6688 ## 3328 N831AW 2 2133.0000 4266 ## 3329 N831AY 62 366.3548 22714 ## 3330 N831MH 3 1170.0000 3510 ## 3331 N831MQ 37 385.3514 14258 ## 3332 N831UA 105 1109.4857 116496 ## 3333 N8320J 5 725.0000 3625 ## 3334 N8321D 11 725.0000 7975 ## 3335 N8322X 15 757.6000 11364 ## 3336 N8323C 5 725.0000 3625 ## 3337 N8324A 13 737.5385 9588 ## 3338 N8325D 13 847.0000 11011 ## 3339 N8326F 8 765.7500 6126 ## 3340 N8327A 10 741.3000 7413 ## 3341 N8328A 11 784.2727 8627 ## 3342 N8329B 13 728.0000 9464 ## 3343 N832AS 163 228.4479 37237 ## 3344 N832AY 44 388.8182 17108 ## 3345 N832MQ 133 427.6316 56875 ## 3346 N832UA 133 1187.6391 157956 ## 3347 N833AS 203 228.4778 46381 ## 3348 N833AY 56 336.8214 18862 ## 3349 N833MQ 48 463.1250 22230 ## 3350 N833UA 132 1045.3561 137987 ## 3351 N834AS 173 228.5087 39532 ## 3352 N834AW 4 1735.0000 6940 ## 3353 N834AY 58 353.0517 20477 ## 3354 N834JB 49 1985.2041 97275 ## 3355 N834MH 1 760.0000 760 ## 3356 N834MQ 73 442.2055 32281 ## 3357 N834UA 129 1200.4419 154857 ## 3358 N835AS 194 228.4794 44325 ## 3359 N835AW 1 2133.0000 2133 ## 3360 N835AY 52 360.2308 18732 ## 3361 N835MH 1 760.0000 760 ## 3362 N835MQ 67 322.8955 21634 ## 3363 N835UA 106 1221.8868 129520 ## 3364 N835VA 72 2485.6667 178968 ## 3365 N836AS 168 228.4821 38385 ## 3366 N836AW 1 2133.0000 2133 ## 3367 N836AY 60 371.5167 22291 ## 3368 N836MQ 85 403.0235 34257 ## 3369 N836UA 93 1293.5699 120302 ## 3370 N836VA 91 2493.0989 226872 ## 3371 N837AW 1 2133.0000 2133 ## 3372 N837MH 2 760.0000 1520 ## 3373 N837MQ 20 369.1500 7383 ## 3374 N837UA 107 1059.7664 113395 ## 3375 N837VA 91 2478.7582 225567 ## 3376 N838AW 2 2133.0000 4266 ## 3377 N838MH 2 760.0000 1520 ## 3378 N838MQ 73 339.1644 24759 ## 3379 N838UA 102 1261.5588 128679 ## 3380 N838VA 91 2475.4066 225262 ## 3381 N8390A 31 346.9032 10754 ## 3382 N839AY 55 384.0727 21124 ## 3383 N839MH 6 760.0000 4560 ## 3384 N839MQ 157 435.9045 68437 ## 3385 N839UA 112 1214.3036 136002 ## 3386 N839VA 127 2495.8110 316968 ## 3387 N8409N 50 342.9800 17149 ## 3388 N840AS 2 443.0000 886 ## 3389 N840AY 58 381.8621 22148 ## 3390 N840MH 1 760.0000 760 ## 3391 N840MQ 103 362.0097 37287 ## 3392 N840UA 101 1127.5545 113883 ## 3393 N840VA 94 2479.5851 233081 ## 3394 N8412F 55 365.5091 20103 ## 3395 N8416B 61 373.8197 22803 ## 3396 N841AY 31 406.4516 12600 ## 3397 N841MH 2 760.0000 1520 ## 3398 N841UA 96 1208.4271 116009 ## 3399 N841VA 97 2478.9691 240460 ## 3400 N8423C 57 373.3333 21280 ## 3401 N842MH 3 1170.6667 3512 ## 3402 N842MQ 65 394.1692 25621 ## 3403 N842UA 144 1208.6528 174046 ## 3404 N842VA 98 2489.3367 243955 ## 3405 N8432A 52 389.6154 20260 ## 3406 N843MH 1 760.0000 760 ## 3407 N843UA 126 1199.2778 151109 ## 3408 N843VA 72 2468.5139 177733 ## 3409 N8444F 36 426.6389 15359 ## 3410 N844MH 1 760.0000 760 ## 3411 N844MQ 94 421.0957 39583 ## 3412 N844UA 121 1101.3223 133260 ## 3413 N844VA 123 2523.3171 310368 ## 3414 N8458A 63 307.6984 19385 ## 3415 N845MH 1 760.0000 760 ## 3416 N845MQ 66 415.7879 27442 ## 3417 N845UA 140 1154.2500 161595 ## 3418 N845VA 100 2509.6500 250965 ## 3419 N846AS 1 585.0000 585 ## 3420 N846MQ 86 370.5698 31869 ## 3421 N846UA 112 1196.1786 133972 ## 3422 N846VA 108 2470.3611 266799 ## 3423 N8475B 35 326.3143 11421 ## 3424 N8477R 53 377.2264 19993 ## 3425 N847MQ 79 422.0886 33345 ## 3426 N847UA 122 1111.0000 135542 ## 3427 N847VA 91 2502.2747 227707 ## 3428 N8488D 47 388.5106 18260 ## 3429 N848AS 3 356.6667 1070 ## 3430 N848MQ 175 370.5257 64842 ## 3431 N848UA 108 1130.9444 122142 ## 3432 N848VA 92 2494.8913 229530 ## 3433 N8492C 66 321.0909 21192 ## 3434 N8495B 44 338.8636 14910 ## 3435 N849MQ 135 408.5111 55149 ## 3436 N849UA 124 1178.2903 146108 ## 3437 N849VA 95 2502.3474 237723 ## 3438 N8501F 62 421.1774 26113 ## 3439 N8505Q 48 313.6042 15053 ## 3440 N8506C 57 379.3509 21623 ## 3441 N850MQ 52 348.0192 18097 ## 3442 N850UA 130 1113.6615 144776 ## 3443 N8515F 30 350.7667 10523 ## 3444 N8516C 56 407.1250 22799 ## 3445 N851MQ 63 384.0952 24198 ## 3446 N851NW 1 2422.0000 2422 ## 3447 N851UA 118 1165.2627 137501 ## 3448 N851VA 74 2488.1081 184120 ## 3449 N8525B 54 407.9259 22028 ## 3450 N852MQ 118 369.2373 43570 ## 3451 N852UA 107 1188.3645 127155 ## 3452 N852VA 78 2490.6667 194272 ## 3453 N8532G 49 385.3673 18883 ## 3454 N8533D 51 356.8235 18198 ## 3455 N853MQ 68 442.9706 30122 ## 3456 N853UA 127 1108.4803 140777 ## 3457 N853VA 79 2503.9241 197810 ## 3458 N8541D 50 348.9800 17449 ## 3459 N8543F 44 339.2500 14927 ## 3460 N854MQ 40 505.0250 20201 ## 3461 N854NW 2 760.0000 1520 ## 3462 N854UA 124 1080.2097 133946 ## 3463 N854VA 87 2496.4598 217192 ## 3464 N8554A 26 398.4615 10360 ## 3465 N855MQ 12 336.5000 4038 ## 3466 N855UA 121 1165.1983 140989 ## 3467 N855VA 74 2510.2973 185762 ## 3468 N8560F 48 363.8750 17466 ## 3469 N856MQ 137 365.0949 50018 ## 3470 N856NW 1 760.0000 760 ## 3471 N8577D 62 381.0000 23622 ## 3472 N857MQ 196 440.9439 86425 ## 3473 N8580A 40 381.5250 15261 ## 3474 N8587E 48 383.2292 18395 ## 3475 N8588D 47 326.8085 15360 ## 3476 N858AS 3 437.3333 1312 ## 3477 N858MQ 13 293.0769 3810 ## 3478 N8598B 46 380.9565 17524 ## 3479 N859AS 1 431.0000 431 ## 3480 N8600F 9 779.3333 7014 ## 3481 N8601C 12 853.9167 10247 ## 3482 N8602F 13 750.0769 9751 ## 3483 N8603F 13 859.5385 11174 ## 3484 N8604C 53 376.0566 19931 ## 3485 N8604K 12 738.5833 8863 ## 3486 N8605E 5 725.0000 3625 ## 3487 N8606C 8 857.2500 6858 ## 3488 N8607M 10 879.7000 8797 ## 3489 N8608N 14 748.2857 10476 ## 3490 N8609A 5 757.6000 3788 ## 3491 N8610A 10 811.6000 8116 ## 3492 N8611A 50 435.4800 21774 ## 3493 N8611F 7 750.1429 5251 ## 3494 N8612K 5 790.2000 3951 ## 3495 N8613K 11 806.3636 8870 ## 3496 N8614M 5 757.6000 3788 ## 3497 N8615E 3 953.6667 2861 ## 3498 N8616C 8 726.6250 5813 ## 3499 N8617E 3 1023.3333 3070 ## 3500 N8618N 1 725.0000 725 ## 3501 N8619F 1 738.0000 738 ## 3502 N8620H 2 725.0000 1450 ## 3503 N8621A 2 725.0000 1450 ## 3504 N8623A 41 416.8780 17092 ## 3505 N862DA 1 502.0000 502 ## 3506 N8631E 32 321.6562 10293 ## 3507 N863DA 2 1488.5000 2977 ## 3508 N8646A 38 352.7632 13405 ## 3509 N8659B 50 339.3200 16966 ## 3510 N865DA 1 502.0000 502 ## 3511 N8665A 52 426.2308 22164 ## 3512 N8672A 48 361.2083 17338 ## 3513 N8673D 48 364.7292 17507 ## 3514 N8674A 45 397.8222 17902 ## 3515 N8683B 42 385.0238 16171 ## 3516 N8688C 45 416.5778 18746 ## 3517 N8694A 60 376.2833 22577 ## 3518 N8696C 46 429.7391 19768 ## 3519 N8698A 57 375.3333 21394 ## 3520 N8709A 53 424.2075 22483 ## 3521 N870AS 4 450.0000 1800 ## 3522 N8710A 49 442.6122 21688 ## 3523 N8718E 39 394.5641 15388 ## 3524 N871AS 1 617.0000 617 ## 3525 N8721B 33 421.6970 13916 ## 3526 N8733G 39 418.1795 16309 ## 3527 N8736A 61 424.1967 25876 ## 3528 N8745B 56 357.5714 20024 ## 3529 N8747B 60 380.2000 22812 ## 3530 N87507 120 1485.7500 178290 ## 3531 N87512 124 1501.9032 186236 ## 3532 N87513 87 1362.3793 118527 ## 3533 N8751D 63 368.7143 23229 ## 3534 N87527 139 1425.9209 198203 ## 3535 N87531 125 1431.5360 178942 ## 3536 N8758D 49 391.5510 19186 ## 3537 N8771A 48 432.1875 20745 ## 3538 N8775A 46 368.5652 16954 ## 3539 N877AS 200 228.3900 45678 ## 3540 N8783E 44 397.0000 17468 ## 3541 N8790A 42 362.4524 15223 ## 3542 N8794B 68 367.4706 24988 ## 3543 N8797A 47 379.8723 17854 ## 3544 N8800G 54 341.0000 18414 ## 3545 N8808H 52 388.3269 20193 ## 3546 N881AS 1 292.0000 292 ## 3547 N8828D 58 384.0517 22275 ## 3548 N8836A 46 385.1522 17717 ## 3549 N8837B 45 475.0667 21378 ## 3550 N8839E 46 365.3913 16808 ## 3551 N8847A 50 325.4000 16270 ## 3552 N8855A 57 349.5965 19927 ## 3553 N8869B 50 322.3000 16115 ## 3554 N8877A 48 390.5000 18744 ## 3555 N8883E 53 370.6415 19644 ## 3556 N8884E 73 363.3973 26528 ## 3557 N8886A 46 393.7609 18113 ## 3558 N8888D 51 418.6275 21350 ## 3559 N8891A 58 366.6724 21267 ## 3560 N8894A 39 380.4615 14838 ## 3561 N8896A 50 364.8800 18244 ## 3562 N8903A 54 355.6852 19207 ## 3563 N8905F 60 392.3333 23540 ## 3564 N8907A 67 368.5373 24692 ## 3565 N8908D 53 439.7925 23309 ## 3566 N8913A 55 355.2364 19538 ## 3567 N8914A 40 349.2750 13971 ## 3568 N8918B 41 322.3902 13218 ## 3569 N891AT 23 647.7826 14899 ## 3570 N8921B 57 361.8596 20626 ## 3571 N8923A 42 377.3095 15847 ## 3572 N8924B 42 415.4524 17449 ## 3573 N8928A 42 381.1190 16007 ## 3574 N892AT 28 682.0714 19098 ## 3575 N8930E 45 350.0889 15754 ## 3576 N8932C 45 352.2444 15851 ## 3577 N8933B 41 343.6098 14088 ## 3578 N8936A 58 402.8103 23363 ## 3579 N8938A 48 403.0208 19345 ## 3580 N893AT 29 610.1379 17694 ## 3581 N8940E 45 359.9111 16196 ## 3582 N8942A 64 304.1875 19468 ## 3583 N8943A 55 353.3818 19436 ## 3584 N8944B 38 412.9211 15691 ## 3585 N8946A 55 378.0909 20795 ## 3586 N8948B 56 373.6250 20923 ## 3587 N894AT 29 610.9655 17718 ## 3588 N895AT 27 693.5185 18725 ## 3589 N8960A 61 402.6393 24561 ## 3590 N8964E 30 416.0333 12481 ## 3591 N8965E 58 352.4655 20443 ## 3592 N8968E 63 345.9841 21797 ## 3593 N8969A 41 350.4634 14369 ## 3594 N896AT 34 631.7647 21480 ## 3595 N8970D 38 387.7368 14734 ## 3596 N8971A 51 396.3922 20216 ## 3597 N8972E 56 366.0536 20499 ## 3598 N8974C 31 333.4194 10336 ## 3599 N8976E 50 355.3000 17765 ## 3600 N8977A 71 373.6338 26528 ## 3601 N8980A 41 378.4146 15515 ## 3602 N8982A 46 440.5435 20265 ## 3603 N8986B 38 425.8684 16183 ## 3604 N899AT 25 674.4000 16860 ## 3605 N8EGMQ 299 652.0669 194968 ## 3606 N900DE 105 932.9429 97959 ## 3607 N900EV 3 356.6667 1070 ## 3608 N900MQ 34 469.8235 15974 ## 3609 N900PC 65 1092.3692 71004 ## 3610 N900WN 14 1082.0714 15149 ## 3611 N901DE 90 920.0000 82800 ## 3612 N901WN 28 1235.1429 34584 ## 3613 N901XJ 244 696.0861 169845 ## 3614 N902DA 1 1020.0000 1020 ## 3615 N902DE 76 898.7105 68302 ## 3616 N902FJ 7 352.0000 2464 ## 3617 N902MQ 45 419.4222 18874 ## 3618 N902WN 25 917.6000 22940 ## 3619 N902XJ 207 650.8261 134721 ## 3620 N903DA 2 1007.5000 2015 ## 3621 N903DE 116 913.5000 105966 ## 3622 N903FJ 10 499.2000 4992 ## 3623 N903JB 19 1375.2632 26130 ## 3624 N903WN 25 960.6800 24017 ## 3625 N903XJ 239 665.4017 159031 ## 3626 N904DA 1 1020.0000 1020 ## 3627 N904DE 75 909.3333 68200 ## 3628 N904DL 95 955.8526 90806 ## 3629 N904FJ 3 544.0000 1632 ## 3630 N904WN 19 1097.6842 20856 ## 3631 N904XJ 218 593.2156 129321 ## 3632 N905DA 1 1020.0000 1020 ## 3633 N905DE 105 906.3905 95171 ## 3634 N905DL 120 938.4333 112612 ## 3635 N905FJ 4 544.0000 2176 ## 3636 N905MQ 8 559.0000 4472 ## 3637 N905WN 36 1037.8056 37361 ## 3638 N905XJ 257 639.5603 164367 ## 3639 N906AT 39 612.2564 23878 ## 3640 N906DA 2 891.0000 1782 ## 3641 N906DE 96 920.8125 88398 ## 3642 N906DL 117 938.5128 109806 ## 3643 N906FJ 8 544.0000 4352 ## 3644 N906MQ 31 396.8387 12302 ## 3645 N906WN 30 1010.9333 30328 ## 3646 N906XJ 262 617.1794 161701 ## 3647 N907DA 1 502.0000 502 ## 3648 N907DE 112 897.5357 100524 ## 3649 N907DL 63 939.0000 59157 ## 3650 N907FJ 7 480.0000 3360 ## 3651 N907JB 18 1392.2778 25061 ## 3652 N907MQ 3 429.6667 1289 ## 3653 N907WN 28 1161.7143 32528 ## 3654 N907XJ 239 631.1967 150856 ## 3655 N908DE 101 918.4257 92761 ## 3656 N908DL 100 889.7500 88975 ## 3657 N908FJ 5 544.0000 2720 ## 3658 N908MQ 22 472.0000 10384 ## 3659 N908WN 24 1021.3750 24513 ## 3660 N908XJ 253 669.1660 169299 ## 3661 N909DE 93 907.8172 84427 ## 3662 N909DL 93 904.5591 84124 ## 3663 N909EV 190 228.4789 43411 ## 3664 N909FJ 8 544.0000 4352 ## 3665 N909MQ 10 445.2000 4452 ## 3666 N909WN 42 985.1190 41375 ## 3667 N909XJ 241 602.2407 145140 ## 3668 N910AT 36 659.9444 23758 ## 3669 N910DE 91 908.2527 82651 ## 3670 N910DL 78 879.0256 68564 ## 3671 N910DN 1 1020.0000 1020 ## 3672 N910FJ 6 544.0000 3264 ## 3673 N910FR 2 1620.0000 3240 ## 3674 N910WN 34 1135.6765 38613 ## 3675 N910XJ 201 598.6269 120324 ## 3676 N911DA 1 1020.0000 1020 ## 3677 N911DE 83 899.2892 74641 ## 3678 N911DL 83 918.0000 76194 ## 3679 N911FJ 3 544.0000 1632 ## 3680 N912DE 102 910.1863 92839 ## 3681 N912DL 69 896.6957 61872 ## 3682 N912DN 2 891.0000 1782 ## 3683 N912FJ 11 503.2727 5536 ## 3684 N912WN 31 1023.3548 31724 ## 3685 N912XJ 236 633.3051 149460 ## 3686 N913DE 89 924.9663 82322 ## 3687 N913DL 78 909.6923 70956 ## 3688 N913DN 1 760.0000 760 ## 3689 N913EV 1 488.0000 488 ## 3690 N913FJ 8 544.0000 4352 ## 3691 N913JB 16 1366.5625 21865 ## 3692 N913WN 28 973.4643 27257 ## 3693 N913XJ 256 649.3555 166235 ## 3694 N914DE 77 910.8571 70136 ## 3695 N914DL 109 944.3211 102931 ## 3696 N914DN 2 891.0000 1782 ## 3697 N914FJ 6 544.0000 3264 ## 3698 N914WN 31 1073.0645 33265 ## 3699 N914XJ 250 636.6360 159159 ## 3700 N915AT 33 607.1515 20036 ## 3701 N915DE 106 912.3113 96705 ## 3702 N915DL 93 899.0860 83615 ## 3703 N915DN 2 344.5000 689 ## 3704 N915FJ 5 544.0000 2720 ## 3705 N915WN 25 1016.6800 25417 ## 3706 N915XJ 235 690.6468 162302 ## 3707 N916DE 82 931.1463 76354 ## 3708 N916DL 97 933.7629 90575 ## 3709 N916DN 1 1020.0000 1020 ## 3710 N916FJ 8 544.0000 4352 ## 3711 N916WN 47 1089.4681 51205 ## 3712 N916XJ 274 618.4891 169466 ## 3713 N917DE 98 927.3673 90882 ## 3714 N917DL 95 935.9053 88911 ## 3715 N917DN 5 998.8000 4994 ## 3716 N917FJ 4 544.0000 2176 ## 3717 N917WN 34 1058.6471 35994 ## 3718 N917XJ 251 623.6375 156533 ## 3719 N918DE 74 911.5135 67452 ## 3720 N918DH 1 760.0000 760 ## 3721 N918DL 100 949.0500 94905 ## 3722 N918FJ 12 544.0000 6528 ## 3723 N918MQ 47 435.4894 20468 ## 3724 N918WN 36 1017.3056 36623 ## 3725 N918XJ 223 637.9462 142262 ## 3726 N919AT 42 631.0714 26505 ## 3727 N919DE 102 892.7157 91057 ## 3728 N919DL 109 901.1743 98228 ## 3729 N919DN 3 872.6667 2618 ## 3730 N919FJ 6 544.0000 3264 ## 3731 N919WN 18 1112.3333 20022 ## 3732 N919XJ 269 635.8810 171052 ## 3733 N920AT 25 616.0000 15400 ## 3734 N920DE 78 927.3846 72336 ## 3735 N920DL 105 923.6952 96988 ## 3736 N920DN 5 898.4000 4492 ## 3737 N920FJ 6 544.0000 3264 ## 3738 N920WN 33 1116.1212 36832 ## 3739 N920XJ 251 624.9920 156873 ## 3740 N921AT 42 631.6429 26529 ## 3741 N921DL 97 916.2887 88880 ## 3742 N921DN 1 746.0000 746 ## 3743 N921FJ 6 544.0000 3264 ## 3744 N921WN 35 992.6000 34741 ## 3745 N921XJ 259 610.1120 158019 ## 3746 N922AT 45 639.8000 28791 ## 3747 N922DL 120 934.2417 112109 ## 3748 N922EV 1 963.0000 963 ## 3749 N922FJ 14 512.0000 7168 ## 3750 N922MQ 34 535.1176 18194 ## 3751 N922WN 33 1100.1212 36304 ## 3752 N922XJ 309 609.3107 188277 ## 3753 N923AT 37 604.1622 22354 ## 3754 N923DL 113 958.8850 108354 ## 3755 N923DN 3 1134.0000 3402 ## 3756 N923FJ 12 544.0000 6528 ## 3757 N923MQ 54 474.8333 25641 ## 3758 N923WN 35 1029.0286 36016 ## 3759 N923XJ 241 633.4149 152653 ## 3760 N924AT 24 670.7500 16098 ## 3761 N924DL 122 919.9836 112238 ## 3762 N924FJ 12 544.0000 6528 ## 3763 N924WN 40 978.6500 39146 ## 3764 N924XJ 254 602.8937 153135 ## 3765 N925AT 52 628.6346 32689 ## 3766 N925DL 86 937.9884 80667 ## 3767 N925FJ 9 544.0000 4896 ## 3768 N925MQ 30 441.4667 13244 ## 3769 N925WN 31 1137.9355 35276 ## 3770 N925XJ 267 633.4944 169143 ## 3771 N926AT 29 673.0690 19519 ## 3772 N926DL 104 892.4327 92813 ## 3773 N926EV 3 437.3333 1312 ## 3774 N926LR 6 544.0000 3264 ## 3775 N926WN 32 881.8750 28220 ## 3776 N926XJ 275 628.2182 172760 ## 3777 N927AT 41 627.8780 25743 ## 3778 N927DA 82 946.7927 77637 ## 3779 N927LR 8 544.0000 4352 ## 3780 N927WN 44 961.1818 42292 ## 3781 N927XJ 237 619.0675 146719 ## 3782 N928AT 47 637.7447 29974 ## 3783 N928DL 94 884.4681 83140 ## 3784 N928DN 1 1020.0000 1020 ## 3785 N928EV 1 617.0000 617 ## 3786 N928LR 12 544.0000 6528 ## 3787 N928MQ 34 498.2353 16940 ## 3788 N928WN 21 1123.0476 23584 ## 3789 N928XJ 258 612.3217 157979 ## 3790 N929AT 23 666.7826 15336 ## 3791 N929DL 108 929.6574 100403 ## 3792 N929DN 1 1020.0000 1020 ## 3793 N929LR 4 544.0000 2176 ## 3794 N929WN 30 998.8333 29965 ## 3795 N929XJ 217 605.4194 131376 ## 3796 N930AT 28 642.9643 18003 ## 3797 N930DL 72 921.1528 66323 ## 3798 N930LR 3 544.0000 1632 ## 3799 N930WN 34 1043.6471 35484 ## 3800 N930XJ 244 655.5082 159944 ## 3801 N931DL 95 895.2316 85047 ## 3802 N931LR 10 544.0000 5440 ## 3803 N931MQ 45 480.6000 21627 ## 3804 N931WN 34 1010.9706 34373 ## 3805 N931XJ 243 609.5926 148131 ## 3806 N932AT 30 664.6667 19940 ## 3807 N932DL 147 937.6735 137838 ## 3808 N932DN 1 762.0000 762 ## 3809 N932LR 7 544.0000 3808 ## 3810 N932MQ 24 437.3750 10497 ## 3811 N932WN 18 943.8333 16989 ## 3812 N932XJ 245 643.8122 157734 ## 3813 N933AT 35 682.4286 23885 ## 3814 N933DL 94 891.1809 83771 ## 3815 N933DN 1 762.0000 762 ## 3816 N933LR 10 544.0000 5440 ## 3817 N933MQ 24 505.4167 12130 ## 3818 N933WN 26 1054.1923 27409 ## 3819 N933XJ 237 677.1350 160481 ## 3820 N934AT 40 634.2500 25370 ## 3821 N934DL 80 957.0750 76566 ## 3822 N934FJ 7 544.0000 3808 ## 3823 N934WN 27 1153.8889 31155 ## 3824 N934XJ 230 632.4043 145453 ## 3825 N935AT 88 732.1250 64427 ## 3826 N935DL 86 892.2791 76736 ## 3827 N935LR 10 499.2000 4992 ## 3828 N935MQ 5 400.0000 2000 ## 3829 N935WN 34 1110.9118 37771 ## 3830 N935XJ 224 623.3259 139625 ## 3831 N936AT 24 608.9167 14614 ## 3832 N936DL 75 933.6667 70025 ## 3833 N936WN 33 1029.0303 33958 ## 3834 N936XJ 260 611.6731 159035 ## 3835 N937AT 41 618.9756 25378 ## 3836 N937DL 95 928.1579 88175 ## 3837 N937DN 1 746.0000 746 ## 3838 N937WN 29 1026.9655 29782 ## 3839 N937XJ 234 636.7265 148994 ## 3840 N938AT 37 632.4595 23401 ## 3841 N938DL 93 951.4624 88486 ## 3842 N938LR 7 544.0000 3808 ## 3843 N938WN 25 1085.3200 27133 ## 3844 N939AT 44 645.3182 28394 ## 3845 N939DL 85 879.7294 74777 ## 3846 N939DN 1 1020.0000 1020 ## 3847 N939LR 10 544.0000 5440 ## 3848 N939MQ 7 423.8571 2967 ## 3849 N939WN 31 930.9032 28858 ## 3850 N940AT 27 640.3333 17289 ## 3851 N940DL 79 938.5443 74145 ## 3852 N940UW 1 529.0000 529 ## 3853 N940WN 18 916.2778 16493 ## 3854 N941DL 89 885.8427 78840 ## 3855 N941DN 1 762.0000 762 ## 3856 N941FR 1 1620.0000 1620 ## 3857 N941MQ 22 440.1364 9683 ## 3858 N941UW 1 529.0000 529 ## 3859 N941WN 28 961.3571 26918 ## 3860 N942AT 20 633.0500 12661 ## 3861 N942DL 71 902.4789 64076 ## 3862 N942LR 12 544.0000 6528 ## 3863 N942MQ 44 461.7273 20316 ## 3864 N942WN 27 1038.1481 28030 ## 3865 N943AT 34 654.6471 22258 ## 3866 N943DL 59 860.8136 50788 ## 3867 N943DN 1 762.0000 762 ## 3868 N943FR 4 1620.0000 6480 ## 3869 N943WN 28 1051.8571 29452 ## 3870 N944AT 27 639.4444 17265 ## 3871 N944DL 101 916.7624 92593 ## 3872 N944DN 3 954.0000 2862 ## 3873 N944UW 222 177.6126 39430 ## 3874 N944WN 29 939.3448 27241 ## 3875 N945AT 38 655.7105 24917 ## 3876 N945DL 83 868.4458 72081 ## 3877 N945DN 1 746.0000 746 ## 3878 N945UW 285 175.9088 50134 ## 3879 N945WN 25 1009.4400 25236 ## 3880 N946AT 37 594.2973 21989 ## 3881 N946DL 89 916.1685 81539 ## 3882 N946UW 270 182.6000 49302 ## 3883 N946WN 33 1081.6061 35693 ## 3884 N947AT 37 651.5405 24107 ## 3885 N947DL 76 917.1974 69707 ## 3886 N947UW 259 180.1158 46650 ## 3887 N947WN 34 931.3529 31666 ## 3888 N948AT 23 682.6522 15701 ## 3889 N948DL 58 896.6724 52007 ## 3890 N948FR 2 1620.0000 3240 ## 3891 N948UW 232 173.6552 40288 ## 3892 N948WN 37 939.1892 34750 ## 3893 N949AT 27 653.8519 17654 ## 3894 N949DL 85 904.9882 76924 ## 3895 N949UW 234 178.4359 41754 ## 3896 N949WN 31 1085.1613 33640 ## 3897 N950AT 27 665.5926 17971 ## 3898 N950DL 70 836.3429 58544 ## 3899 N950UW 243 178.2058 43304 ## 3900 N950WN 26 1157.6923 30100 ## 3901 N951AT 43 634.1163 27267 ## 3902 N951DL 67 887.8209 59484 ## 3903 N951FR 4 1620.0000 6480 ## 3904 N951UW 265 179.9698 47692 ## 3905 N951WN 21 971.3810 20399 ## 3906 N952AT 30 663.8667 19916 ## 3907 N952DL 85 935.1882 79491 ## 3908 N952FR 2 1620.0000 3240 ## 3909 N952UW 282 176.8511 49872 ## 3910 N952WN 31 973.1290 30167 ## 3911 N953AT 26 663.7308 17257 ## 3912 N953DL 85 891.9176 75813 ## 3913 N953DN 1 762.0000 762 ## 3914 N953FR 3 1620.0000 4860 ## 3915 N953UW 310 180.6581 56004 ## 3916 N953WN 27 975.8889 26349 ## 3917 N954AT 30 664.6667 19940 ## 3918 N954DL 81 887.3333 71874 ## 3919 N954UW 237 176.2194 41764 ## 3920 N954WN 32 1036.2812 33161 ## 3921 N955AT 41 637.3659 26132 ## 3922 N955DL 72 964.5278 69446 ## 3923 N955DN 1 746.0000 746 ## 3924 N955UW 225 173.0933 38946 ## 3925 N955WN 39 872.1282 34013 ## 3926 N956AT 36 639.0000 23004 ## 3927 N956DL 65 868.9538 56482 ## 3928 N956DN 1 746.0000 746 ## 3929 N956LR 4 544.0000 2176 ## 3930 N956UW 222 174.3784 38712 ## 3931 N956WN 38 1144.2895 43483 ## 3932 N957AT 29 584.1379 16940 ## 3933 N957DL 77 888.4545 68411 ## 3934 N957DN 1 1020.0000 1020 ## 3935 N957UW 286 180.9161 51742 ## 3936 N957WN 24 1124.8333 26996 ## 3937 N958AT 36 660.6111 23782 ## 3938 N958DL 103 904.2330 93136 ## 3939 N958DN 3 934.0000 2802 ## 3940 N958UW 200 180.0000 36000 ## 3941 N958WN 28 866.2857 24256 ## 3942 N959AT 29 647.8966 18789 ## 3943 N959DL 85 911.8235 77505 ## 3944 N959DN 3 837.3333 2512 ## 3945 N959UW 213 174.1315 37090 ## 3946 N959WN 24 1029.0417 24697 ## 3947 N960AT 28 670.7500 18781 ## 3948 N960DL 58 876.3966 50831 ## 3949 N960DN 3 1045.3333 3136 ## 3950 N960WN 27 867.6667 23427 ## 3951 N961AT 35 668.1429 23385 ## 3952 N961DL 84 922.6190 77500 ## 3953 N961DN 3 944.6667 2834 ## 3954 N961UW 226 177.8407 40192 ## 3955 N961WN 32 1066.8438 34139 ## 3956 N962DL 80 970.7000 77656 ## 3957 N962DN 1 1020.0000 1020 ## 3958 N962WN 24 1232.6250 29583 ## 3959 N963AT 33 661.7273 21837 ## 3960 N963DL 111 976.2523 108364 ## 3961 N963DN 5 946.8000 4734 ## 3962 N963UW 219 179.5342 39318 ## 3963 N963WN 39 1071.2821 41780 ## 3964 N964AT 36 649.8056 23393 ## 3965 N964DL 70 902.9429 63206 ## 3966 N964DN 2 761.0000 1522 ## 3967 N964WN 28 1069.9286 29958 ## 3968 N965AT 41 628.4634 25767 ## 3969 N965DL 80 911.0125 72881 ## 3970 N965DN 2 761.0000 1522 ## 3971 N965UW 218 179.2385 39074 ## 3972 N965WN 29 1137.5172 32988 ## 3973 N966AT 36 649.1389 23369 ## 3974 N966DL 89 907.1910 80740 ## 3975 N966WN 23 961.0000 22103 ## 3976 N967AT 39 659.0513 25703 ## 3977 N967DL 89 899.9663 80097 ## 3978 N967UW 208 178.4327 37114 ## 3979 N967WN 29 1015.7931 29458 ## 3980 N968AT 28 669.8929 18757 ## 3981 N968DL 100 904.9900 90499 ## 3982 N968WN 19 1031.7895 19604 ## 3983 N969AT 34 696.8824 23694 ## 3984 N969DL 106 887.3302 94057 ## 3985 N969WN 33 1091.4848 36019 ## 3986 N970AT 30 676.0333 20281 ## 3987 N970DL 90 938.4556 84461 ## 3988 N971AT 35 657.7143 23020 ## 3989 N971DL 90 914.7889 82331 ## 3990 N972AT 32 670.7500 21464 ## 3991 N972DL 89 907.5730 80774 ## 3992 N973DL 77 856.6494 65962 ## 3993 N974AT 35 678.5714 23750 ## 3994 N974DL 83 916.5663 76075 ## 3995 N975AT 24 682.9583 16391 ## 3996 N975DL 105 932.5238 97915 ## 3997 N976DL 94 894.2447 84059 ## 3998 N977AT 86 695.2326 59790 ## 3999 N977DL 79 880.9494 69595 ## 4000 N978AT 65 709.4154 46112 ## 4001 N978DL 78 927.2949 72329 ## 4002 N978SW 1 733.0000 733 ## 4003 N979AT 58 709.7069 41163 ## 4004 N979DL 126 935.1746 117832 ## 4005 N980AT 47 637.7447 29974 ## 4006 N980DL 83 896.5542 74414 ## 4007 N981AT 44 680.7727 29954 ## 4008 N981DL 88 920.8636 81036 ## 4009 N982AT 23 712.3043 16383 ## 4010 N982DL 87 920.6092 80093 ## 4011 N983AT 32 625.1250 20004 ## 4012 N983DL 98 890.3265 87252 ## 4013 N984DL 58 904.7414 52475 ## 4014 N985AT 29 647.8966 18789 ## 4015 N985DL 63 905.1111 57022 ## 4016 N986AT 24 654.5417 15709 ## 4017 N986DL 73 943.7808 68896 ## 4018 N987AT 28 618.6071 17321 ## 4019 N987DL 55 922.8727 50758 ## 4020 N988AT 37 642.9730 23790 ## 4021 N988DL 55 864.2000 47531 ## 4022 N989AT 66 694.8182 45858 ## 4023 N989DL 89 908.6854 80873 ## 4024 N990AT 71 731.6056 51944 ## 4025 N990DL 56 863.0357 48330 ## 4026 N991AT 25 659.8000 16495 ## 4027 N991DL 92 902.9239 83069 ## 4028 N992AT 38 637.1316 24211 ## 4029 N992DL 57 902.7544 51457 ## 4030 N993AT 47 606.6809 28514 ## 4031 N993DL 55 884.9091 48670 ## 4032 N994AT 31 698.4839 21653 ## 4033 N994DL 61 886.7869 54094 ## 4034 N995AT 18 657.9444 11843 ## 4035 N995DL 57 883.5789 50364 ## 4036 N996AT 29 673.8966 19543 ## 4037 N996DL 102 897.3039 91525 ## 4038 N997AT 44 679.0455 29878 ## 4039 N997DL 63 867.7619 54669 ## 4040 N998AT 26 593.5385 15432 ## 4041 N998DL 77 857.8182 66052 ## 4042 N999DN 61 895.4590 54623 ## 4043 N9EAMQ 248 674.6653 167317 ``` --- ### show_query() show_query()는 dplyr로 구성된 함수의 연결이 query문으로 어떻게 변환되는지를 보여줌 ```r copy_to(conn, planes, name = 'planes', temporary = FALSE) tbl(conn, 'planes_distance') %>% inner_join(tbl(conn, 'planes'), by='tailnum') %>% arrange(desc(total_distance)) %>% select(total_distance, manufacturer, model) %>% show_query() ``` ``` ## <SQL> ## SELECT `total_distance` AS `total_distance`, `manufacturer` AS `manufacturer`, `model` AS `model` ## FROM (SELECT * ## FROM (SELECT `TBL_LEFT`.`tailnum` AS `tailnum`, `TBL_LEFT`.`count` AS `count`, `TBL_LEFT`.`mean_distance` AS `mean_distance`, `TBL_LEFT`.`total_distance` AS `total_distance`, `TBL_RIGHT`.`year` AS `year`, `TBL_RIGHT`.`type` AS `type`, `TBL_RIGHT`.`manufacturer` AS `manufacturer`, `TBL_RIGHT`.`model` AS `model`, `TBL_RIGHT`.`engines` AS `engines`, `TBL_RIGHT`.`seats` AS `seats`, `TBL_RIGHT`.`speed` AS `speed`, `TBL_RIGHT`.`engine` AS `engine` ## FROM `planes_distance` AS `TBL_LEFT` ## INNER JOIN `planes` AS `TBL_RIGHT` ## ON (`TBL_LEFT`.`tailnum` = `TBL_RIGHT`.`tailnum`) ## ) ## ORDER BY `total_distance` DESC) ``` --- ## 과제 - recomen 폴더에 있는 6개 데이터를 활용해서 다음장의 6개 질문에 답해주세요. - 데이터가 5개이신 분은 아래 코드를 실행해서 다운로드해주세요. 1.4G라 시간이 좀 걸립니다. ```{} chk<-file.info("./data/recomen/tran.csv") if(is.na(chk$size)){ recoment<-"http://rcoholic.duckdns.org/oc/index.php/s/jISrPutj4ocLci2/download" dir.create("./data", showWarnings = F) dir.create("./data/recomen", showWarnings = F) download.file(recoment,destfile="./data/recomen/tran.csv",mode='wb') } ``` - 답을 구하기 위한 코드와 답을 class3assignment 폴더에 class3_[이름].R로 제출해주세요.(답은 주석으로 작성) - sql, dplyr+tidyr, data.table 등 무엇이든 사용하시고, 외부서비스도 가능하시면 무엇이든 사용하세요. 몇 문제는 계산 시간이 오래걸릴 수 있습니다. --- ## 문제 1. receiptNum가 "6998419"인 구매기록의 가격(amout)의 합은 얼마인가요? 2. 가장 비싼 item은 무엇인가요? 3. 사용자들이 가장 많이 사용한 체널은 mobile/app과 onlinemall 중에 무엇입니까? 4. 월매출이 2015년 03월 가장 높은 매장의 storeCode는 무엇인가요? 5. 경쟁사의 이용기록이 가장 많은 사용자의 성별은 무엇입니까? (competitor 데이터에서 1row가 1건이라고 가정) 6. 한번에 3개 이상 구매한 경우에 가장 많이 구매에 포함된 제품 카테고리(cate_3)는 무엇입니까? [1]: https://www.tidyverse.org/ [2]: https://mrchypark.github.io/kisa_finR/#(5) [3]: http://dplyr.tidyverse.org/ [4]: http://tidyr.tidyverse.org/